994 resultados para fabric testing
Resumo:
An alternative learning approach for destructive testing of structural specimens in civil engineering is explored by using a remote laboratory experimentation method. The remote laboratory approach focuses on overcoming the constraints in the hands-on experimentation without compromising the understanding of the students on the concepts and mechanics of reinforced concrete structures. The goal of this study is to evaluate whether or not the remote laboratory experimentation approach can become a standard in civil engineering teaching. The teaching activity using remote-laboratory experimentation is presented here and the outcomes of this activity are outlined. The experience and feedback gathered from this study are used to improve the remote-laboratory experimentation approach in future years to other aspects of civil engineering where destructive testing is essential.
Resumo:
Presentation by Dr Caroline Grant, Science & Engineering Faculty, IHBI, at Managing your research data seminar, 2012
Resumo:
Very little is known about the infl uence of the mechanical environment on the healing of large segmental defects. This partly reflects the lack of standardised, well characterised technologies to enable such studies. Here we report the design, construction and characterisation of a novel external fixator for use in conjunction with rat femoral defects. This device not only imposes a predetermined axial stiffness on the lesion, but also enables the stiffness to be changed during the healing process. The main frame of the fi xator consists of polyethylethylketone with titanium alloy mounting pins. The stiffness of the fi xator is determined by interchangeable connection elements of different thicknesses. Fixators were shown to stabilise 5 mm femoral defects in rats in vivo for at least 8 weeks during unrestricted cage activity. No distortion or infections, including pin infections, were noted. The healing process was simulated in vitro by inserting into a 5 mm femoral defect, materials whose Young’s moduli approximated those of the different tissues present in regenerating bone. These studies confirmed that, although the external fixator is the major determinant of axial stiffness during the early phase of healing, the regenerate within the lesion subsequently dominates this property. There is much clinical interest in altering the mechanics of the defect to enhance bone healing. Our data suggest that, if alteration of the mechanical environment is to be used to modulate the healing of large segmental defects, this needs to be performed before the tissue properties become dominant.
Resumo:
This paper examines collaborative researcher-practitioner knowledge work around assessment data in culturally diverse, low- socioeconomic school communities in Queensland, Australia. Specifically, the paper draws on interview accounts about the work of a bridging knowledge flows between a local university and a cluster of schools. We draw on Bernstein’s (2000) concept of recontextualisation to explore the processes of knowledge mediation in dialogues around student assessment data to design instructional innovations. We argue that critical policy studies need to explore the complex ways in which neoliberal education policies are enacted in local sites. Moreover, we suggest that an analysis of collaborative knowledge work designed to improve student learning outcomes in low-socioeconomic school communities necessitates attention to the principles regulating knowledge flows across boundaries. In addition, it necessitates attention to the ways in which mediators navigate dilemmatic spaces, anxieties and affects/feelings in order to generate innovative learning designs in the current global context of high-stakes national testing and accountability regimes.
Resumo:
Fire incident in buildings is common in Hong Kong and this could lead to heavy casualties due to its high population density, so the fire safety design of the framed structure is an important research topic. This paper describes a computer tool for determination of capacity of structural safety against various fire scenarios and the well-accepted second-order direct plastic analysis is adopted for simulation of material yielding and buckling. A computer method is developed to predict structural behaviour of bare steel framed structures at elevated temperatures but the work can be applied to structures made of other materials. These effects of thermal expansion and material degradation due to heating are required to be considered in order to capture the actual behavior of the structure under fire. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. Several numerical and experimental verifications of framed structures are presented and compared against solutions by other researchers. The proposed method allows us to adopt the truly performance-based structural fire analysis and design with significant saving in cost and time.
Resumo:
As the number of Uninhabited Airborne Systems (UAS) proliferates in civil applications, industry is increasingly putting pressure on regulation authorities to provide a path for certification and allow UAS integration into regulated airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the last topic and describes a framework for quantifying robust autonomy of UAS, which quantifies the system's ability to either continue operating in the presence of faults or safely shut down. Two figures of merit are used to evaluate vehicle performance relative to mission requirements and the consequences of autonomous decision making in motion control and guidance systems. These figures of merit are interpreted within a probabilistic framework, which extends previous work in the literature. The valuation of the figures of merit can be done using stochastic simulation scenarios during both vehicle development and certification stages with different degrees of integration of hardware-in-the-loop simulation technology. The objective of the proposed framework is to aid in decision making about the suitability of a vehicle with respect to safety and reliability relative to mission requirements.
Resumo:
A unique high temporal frequency dataset from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N2O fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. A 25 year scenario analysis indicated that N2O losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e. frequent irrigation, avoidance of excessive fertiliser application), while sustaining maximum yield potentials.
Resumo:
Integer ambiguity resolution is an indispensable procedure for all high precision GNSS applications. The correctness of the estimated integer ambiguities is the key to achieving highly reliable positioning, but the solution cannot be validated with classical hypothesis testing methods. The integer aperture estimation theory unifies all existing ambiguity validation tests and provides a new prospective to review existing methods, which enables us to have a better understanding on the ambiguity validation problem. This contribution analyses two simple but efficient ambiguity validation test methods, ratio test and difference test, from three aspects: acceptance region, probability basis and numerical results. The major contribution of this paper can be summarized as: (1) The ratio test acceptance region is overlap of ellipsoids while the difference test acceptance region is overlap of half-spaces. (2) The probability basis of these two popular tests is firstly analyzed. The difference test is an approximation to optimal integer aperture, while the ratio test follows an exponential relationship in probability. (3) The limitations of the two tests are firstly identified. The two tests may under-evaluate the failure risk if the model is not strong enough or the float ambiguities fall in particular region. (4) Extensive numerical results are used to compare the performance of these two tests. The simulation results show the ratio test outperforms the difference test in some models while difference test performs better in other models. Particularly in the medium baseline kinematic model, the difference tests outperforms the ratio test, the superiority is independent on frequency number, observation noise, satellite geometry, while it depends on success rate and failure rate tolerance. Smaller failure rate leads to larger performance discrepancy.
Resumo:
Various tools have been developed to assist designers in making interfaces easier to use although none yet offer a complete solution. Through previous work we have established that intuitive interaction is based on past experience. From this we have developed theory around intuitive interaction, a continuum and a conceptual tool for intuitive use. We then trialled our tool. Firstly, one designer used the tool to design a camera. Secondly, seven groups of postgraduate students re-designed various products using our tool. We then chose one of these - a microwave – and prototyped the new and original microwave interfaces on a touchscreen. We tested them on three different age groups. We found that the new design was more intuitive and rated by participants as more familiar. Therefore, design interventions based on our intuitive interaction theory can work. Work is ongoing to develop the tool further.
Resumo:
В статье представлено развитие принципа построения автоматической пилотажно-навигационной системы (АПНС) для беспилотного летательного аппарата (БЛА). Принцип заключается в синтезе комплексных систем управления БПЛА не только на основе использования алгоритмов БИНС, но и алгоритмов, объединяющих в себе решение задач формирования и отработки сформированной траектории резервированной системой управления и навигации. Приведены результаты аналитического исследования и данные летных экспериментов разработанных алгоритмов АПНС БЛА, обеспечивающих дополнительное резервирование алгоритмов навигации и наделяющих БЛА новым функциональной способностью по выходу в заданную точку пространства с заданной скоростью в заданный момент времени с учетом атмосферных ветровых возмущений. Предложена и испытана методика идентификации параметров воздушной атмосферы: направления и скорости W ветра. Данные летных испытаний полученного решения задачи терминальной навигации демонстрируют устойчивую работу синтезированных алгоритмов управления в различных метеоусловиях. The article presents a progress in principle of development of automatic navigation management system (ANMS) for small unmanned aerial vehicle (UAV). The principle defines a development of integrated control systems for UAV based on tight coupling of strap down inertial navigation system algorithms and algorithms of redundant flight management system to form and control flight trajectory. The results of the research and flight testing of the developed ANMS UAV algorithms are presented. The system demonstrates advanced functional redundancy of UAV guidance. The system enables new UAV capability to perform autonomous multidimensional navigation along waypoints with controlled speed and time of arrival taking into account wind. The paper describes the technique for real-time identification of atmosphere parameters such as wind direction and wind speed. The flight test results demonstrate robustness of the algorithms in diverse meteorological conditions.
Resumo:
Early childhood research has long established that drawing is a central, and important activity for young children. Less common are investigations into the drawing activity of adults involved in early childhood. A team of adult early childhood researchers, with differing exposures and familiarities with drawing, experimented with intergenerational collaborative drawing with colleagues, students, family members and others, to explore the effectiveness of drawing as a research process and as an arts-based methodology. This testing prompted critical thinking into how drawing might facilitate research that involves young children, to operate in more communicable ways, and how research-focused drawings might occur in reference to a research project.
Resumo:
This paper tested the effects of the 2005 vehicle emission-control law issued in Japan on the market linkages between the U.S. and Japanese palladium futures markets, To determine these effects, we applied a cointegration test both with and without break points in the time series and found that the market linkages between the two countries changed after the break in October 2005. Our results show that the 2005 long-term regulation of vehicle emissions enacted in Japan influenced the international palladium futures market.
Resumo:
While economic theory acknowledges that some features of technology (e.g., indivisibilities, economies of scale and specialization) can fundamentally violate the traditional convexity assumption, almost all empirical studies accept the convexity property on faith. In this contribution, we apply two alternative flexible production technologies to measure total factor productivity growth and test the significance of the convexity axiom using a nonparametric test of closeness between unknown distributions. Based on unique field level data on the petroleum industry, the empirical results reveal significant differences, indicating that this production technology is most likely non-convex. Furthermore, we also show the impact of convexity on answers to traditional convergence questions in the productivity growth literature.