991 resultados para experimental film


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of binary SB blend samples with various overall volume fraction of PS (Phi(PS)) and different discrete distribution of the block length (denoted as d(PS) or d(PB)) were prepared by mixing various asymmetric poly(styrene)-block-poly(butadiene) (SB) block copolymers with a symmetric SB block copolymer. The influences of the external solvent field, composition, and the block length distribution on the morphologies of the blends in the thin films were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The experimental results revealed that after solvent annealing, the interface of the blend thin films depended mainly on the cooperative effects of the annealing solvent and the inherently interfacial curvature of the blends. Upon exposure to the saturated vapor of cyclohexane, which has preferential affinity for the PB block, a "threshold" of Phi(PS) (approximate 0.635-0.707) was found. Below such threshold, the influence of the annealing solvent played an important role on the interfacial curvature of the blend thin film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-organization of BaF2 single crystal film under a compressed monolayer of behenic acid (BA) has been investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results indicated the (100)-oriented single crystal film of BaF2 was formed under the BA monolayer. The relation between the BaF2 single crystal and the monolayer was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoindentation technique and scanning force microscopy have been used to measure directly the polyethylene modulus along the chain axis. Single crystals of polyethylene were employed in order to obtain well-aligned chain segments. To minimize effects of scanner creep, a Z scan rate of 3 Hz was employed. The "X Rotate" value of 25 degrees was selected to eliminate effects of lateral tip motion. The results were analyzed by the Oliver -Pharr method for which direct observation and measurement of the contact area are not required. Considering the influence of tip roundness on the projected contact area, the nanoindentation results were analyzed by the Sawa method. The chain modulus obtained from the thinner polyethylene single crystal sample was 204 +/- 21 GPa by the Oliver-Pharr method and 168 +/- 17 GPa by the Sawa method. The lower values than expected were due to substrate effects and anisotropy of chain deformation during nanoindentation. An extrapolation of the chain modulus obtained by various strains to zero nanoindentation eliminated the effect of substrate and anisotropy of chain deformation. The corresponding chain modulus obtained from the thicker sample was 278 GPa by the Oliver-Pharr method and 267 GPa by the Sawa method, respectively, in better agreement with the value of 340 Cpa determined theoretically. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have investigated the reactivity of the molybdenum oxide film toward some standard redox systems (e.g., ferrocene (Fc) and its derivatives) and observed a few interesting phenomena. The results demonstrate that the electrochemical behaviour of Fc and its derivatives at the oxide-modified carbon fiber (CF) microelectrode differs from that at a bare CF microelectrode, The conductivity of the molybdenum oxide film is seriously affected by the range and the direction of the potential scan, which influences the electrochemical behaviour of these redox systems at the film electrode. If the cycling potential is more positive than the reduction potential of the molybdenum oxide film, the reduction and oxidation peak currents of Fc and its derivatives could not be observed. The result indicates that the molybdenum oxide film on a microelectrode surface cannot transfer electrons between the surface of the electrode and Fc or its derivatives due to the existence of a high resistance between the interface in these potential ranges. On the other hand, if the lower limit of the scan potential was extended to a potential more negative than the reduction peak potential of the film, the oxidation peak of Fc or its derivatives appeared at about the potential relative to E-0 of Fc or its derivatives on the bare electrode, and the peak current is proportional to the concentration of these couples in the electrolyte. To our surprise, the peak height on the modified electrode is much larger than that on the bare CF microelectrode under the same conditions in the range of low concentration of these couples, and the oxidation peak potential of these couples is more negative than that on the bare CF microelectrode. On the basis of the experimental observation, we propose that these redox couples may undergo an interaction with the reduction state of the molybdenum oxide film. The new phenomena that we observed have been explained by using this interaction. (C) 1997 Elsevier Science S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or D-amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 x 10(-6) M and a linear concentration range of 0.01-3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another (D-amino acid) sensor gave a detection limit of 3 x 10(-5) M D-alanine, injected with a linear concentration range of 7.0 x 10(-5)-1.4 x 10(-2) M. Glucose and D-amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polypyrrole doped with p-toluenesulfonate was electropolymerized onto highly oriented pyrolytic graphite (HOPG), glassy carbon (GC) and Pt electrode surfaces under the same experimental conditions. The resulting films were studied by scanning tunneling m

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodes modified with isopolymolybdic acid+polyaniline film, which exhibit high stability and activity in aqueous acidic solution, have been prepared successfully using two methods: one-step synthesis by electrochemical polymerization at a constant applied potential of +0.80 V/SCE or by cycling the potential at 100 mV/s between -0.12 and +0.85 V in 0.5 M H2SO4 containing 5.0x10(-2) M aniline and 5.0x10(-3) M H4Mo8O26, or two-step synthesis by doping the polyaniline film electrode with isopoly acid (IPA) under a cycling potential between -0.20 and +0.40 V in 0.5 M H2SO4 containing the H4Mo8O26 dopant. The thickness of the film and the amount of dopant in the polyaniline film can be controlled by experimental parameters such as the charge, time and the ratio of aniline to IPA in the solution. The experimental results show that electrodes modified with isopolymolybdic acid+polyaniline film using both methods have a strong catalytic effect on the reduction of chlorate anions. Comparison of the two methods of modification shows that the catalytic effect at the modified electrode prepared by the two-step method is greater than that at the electrode prepared by the one-step method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrode capacitance and photocurrent spectra of electrodeposited polycrystalline Hg1-xCdxTe thin films of varying (1-x) were measured in polysulfide redox solution, hence the flatband potentional PHI(fb) and the bandgap E(g) of Hg1-xCdxTe thin films obtained. It was of interest to find out that only the location of conduction band E(c) shifts negatively with increasing (1-x) while the valence band E(v), is almost constant. The experimental open circuit photovoltage V0 is smaller than theoretical value V(max) calculated through flatband potential PHI(fb), therefore there is a possibility of promoting the experimental open circuit photovoltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a carbon fibre (CF) microelectrode modified with the 2:18-molybdodiphosphate anion by simple adsorption is described and its electrochemical behaviour is reported. The 2:18-molybdodiphosphate anion (alpha-P2Mo18O626-), which is a Dawson structure, undergoes five successive multielectron reductions in acidic solution. The first three redox waves correspond to the two-electron process, and the last two waves are four-electron and six-electron processes respectively. On the basis of the experimental results it is shown that the electrode process of alpha-P2Mo18O626- on the CF electrode in acidic solution is simultaneously controlled by the diffusion and adsorption of alpha-P2Mo18O626- anions. When the concentration of the alpha-P2Mo18O626- in the solution is reduced, the electrode process mainly exhibits non-diffusion-controlled behaviour, and the diffusion-limited process takes over as the concentration of alpha-P2Mo18O626- becomes higher. The CF electrode modified with a thin film of alpha-P2Mo18O626- exhibits very good stability and redox behaviour in aqueous acidic solution. The alpha-P2Mo18O626- is reduced to heteropoly blue, with an accompanying protonation process. The addition of more than six electrons to the alpha-P2Mo18O626- anion in an aqueous solution does not result in its decomposition. The result obtained is not the same as that reported previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conducting polyaniline (PAn) film modified glassy carbon (GC) electrode was prepared by electrochemical polymerization. The electrochemical behavior of ascorbic acid (AH(2)) in aqueous solution at this PAn modified electrode was studied in detail. The experimental results show that PAn film modified electrode has good electrocatalytic activity on the oxidation of ascorbic acid in aqueous solution over a wide range of pH value, among which pH 4 is the optimum condition. The oxidation process of ascorbic acid at PAn film electrode can be regarded as an EC catalytic mechanism. The kinetic process of the catalytic reaction was investigated by rotating disk electrode (RDE) coated with PAn films. The rate constant of the catalytic reaction was evaluated. The catalytic peak currents are proportional to the concentrations tions of ascorbic acid in the range of 5 x 10(-2)-1 x 10(-6) mol . L-1. The PAn film elec trodes give very stable responce for the oxidation of ascorbic acid. The present investigation shows the posibility of using PAn film modified electrode for the determination of ascorbic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Nafion/ionophore, 4-tert-butylcalix[4]arene-tetrakis(N,N-dimethylthioacetamide) composite coated and bismuth film modified glassy carbon electrode. (GC/NA-IONO/BiFE) was described to determine trace lead sensitively and selectively. The characteristics of such modified GC/NA-IONO/BiFE were studied by scanning electron microscopy and cyclic voltammetry. The influence of various experimental parameters upon the stripping lead signal at the GC/NA-IONO/BiFE was explored. Under the optimized conditions, the differential pulse voltammetric stripping response is highly linear over the 0.1-8.0 nM lead range examined (180s preconcentration at -1.2V), with a detection limit of 0.044nM and good precision (RSD=5.4% at 0.5nM). Also applicability to seawater samples was demonstrated at such modified electrode. The high selectivity of ionophore coupled with the excellent electrochemical characteristics of bismuth endow the GC/NA-IONO/BiFE a promising and robust tool for monitoring of trace lead rapidly and precisely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacial waves on the surface of a falling liquid film are known to modify heat and mass transfer. Under non-isothermal conditions, the wave topology is strongly influenced by the presence of thermocapillary (Marangoni) forces at the interface which leads to a destabilization of the film flow and potentially to critical film thinning. In this context, the present study investigates the evolution of the surface topology and the evolution of the surface temperature for the case of regularly excited solitary-type waves on a falling liquid film under the influence of a wall-side heat flux. Combining film thickness (chromatic confocal imaging) and surface temperature information (infrared thermography), interactions between hydrodynamics and thermocapillary forces are revealed. These include the formation of rivulets, film thinning and wave number doubling in spanwise direction. Distinct thermal structures on the films’ surface can be associated to characteristics of the surface topology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments as well as computer modeling methods have been used to investigate the effect of the solder reflow process on the electrical characteristics and reliability of anisotropic conductive film (ACF) interconnections. In the experiments, the contact resistance of the ACF interconnections was found to increase after a subsequent reflow and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. In fact, nearly 40 percent of the joints were opened (i.e. lifted away from the pad) after the reflow with a peak temperature of 260 OC while no openings was observed when the peak temperature was 210 "C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a 3-D model of an ACF joint structure was built and Finite Element Analysis was used to predict the stress distrihution in the conductive particles, adhesive matrix and metal pads during the reflow process. The effects of the peak temperature, the CTE of the adhesive matrix and the bump height on the reliability of the ACF interconnections were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anisotropic conductive film (ACF) which consists of an adhesive epoxy matrix and randomly distributed conductive particles are widely used as the connection material for electronic devices with high I/O counts. However, for the semiconductor industry the reliability of the ACF is still a major concern due to a lack of experimental reliability data. This paper reports the investigations into the moisture-induced failures in Flip-Chip-on-Flex interconnections with Anisotropic Conductive Films (ACFs). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, and 2atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours’ testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. For a better understanding of the experimental results, 3-D Finite Element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.