968 resultados para excavations (archaeology)
Resumo:
Two case histories on deep excavation of marine clay are used to study the use of a decision-making tool based on a new deign method called the Mobilized Strength Design (MSD) method which allows the designer to use a simple method of predicting ground displacements during deep excavation. This application can approximately satisfy both safety and serviceability requirements by predicting stresses and displacements under working conditions by introducing the concept of "Mobilizable soil strength". The new method accommodates a number of features which are important to design of underground construction between retaining walls, including different deformation mechanism in different stages of excavation. The influence of wall depth, wall flexibility and stratified ground are the major focus of this paper. These developments should make it possible for a design engineer to take informed decisions on the influence of wall stiffness, or on the need for a jet-grouted base slab, for example, without having to conduct project-specific Finite Element Analysis.
Resumo:
Finite Element Analysis (FEA) is used to calibrate a decision-making tool based on an extension of the Mobilized Strength Design (MSD) method which permits the designer an extremely simple method of predicting ground displacements during construction. This newly extended MSD approach accommodates a number of issues which are important in underground construction between in-situ walls, including: alternative base heave mechanisms suitable either for wide excavations in relatively shallow soft clay strata, or narrow excavations in relatively deep soft strata; the influence of support system stiffness in relation to the sequence of propping of the wall; and the capability of dealing with stratified ground. These developments should make it possible for a design engineer to take informed decisions on the relationship between prop spacing and ground movements, or the influence of wall stiffness, or on the need for and influence of a jet-grouted base slab, for example, without having to conduct project-specific FEA. © 2009 Taylor & Francis Group.
Resumo:
Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil-structure interaction mechanisms. The significance of these observations is discussed.
Resumo:
This paper explores the influence of the piled foundation on the building response to excavation-induced deformations. The influence of the type of foundation, the position of positive and negative skin friction zones, and the flexibility of the piles is evaluated with respect to both horizontal and vertical soil deformations. Case histories from the Netherlands are included from Amsterdam (North South Line) and Rotterdam (a building adjacent to the Willemspoortunnel). Most of the buildings are founded on timber piles ranging in length from 12-17 m. Conclusions are drawn about the interaction between the piled building and the soil deformation. © 2012 Taylor & Francis Group.
Resumo:
Deep excavations and tunnelling can cause ground movements that affect buildings within their influence zone. The current approach for building damage assessment is based on tensile strains estimated from the deflection ratio and the horizontal strains at the building foundation. For tunnelling-induced deformations, Potts & Addenbrooke (1997) suggested a method to estimate the building response from greenfield conditions using the relative building stiffness. However, there is not much guidance for building response to excavation-induced movements. This paper presents a numerical study on the response of buildings to movements caused by deep excavations in soft clays, and proposes design guidance to estimate the deflection ratio and the horizontal strains of the building from the building stiffness. © 2012 Taylor & Francis Group.
Resumo:
The ground movements induced by the construction of supported excavation systems are generally predicted by empirical/semi-empirical methods in the design stage. However, these methods cannot account for the site-specific conditions and for information that becomes available as an excavation proceeds. A Bayesian updating methodology is proposed to update the predictions of ground movements in the later stages of excavation based on recorded deformation measurements. As an application, the proposed framework is used to predict the three-dimensional deformation shapes at four incremental excavation stages of an actual supported excavation project. © 2011 Taylor & Francis Group, London.
Resumo:
The ground movements induced by the construction of supported excavation systems are generally predicted in the design stage by empirical/semi-empirical methods. However, these methods cannot account for the site-specific conditions and for information that become available as an excavation proceeds. A Bayesian updating methodology is proposed to update the predictions of ground movements in the later stages of excavation based on recorded deformation measurements. As an application, the proposed framework is used to predict the three-dimensional deformation shapes at four incremental excavation stages of an actual supported excavation project. Copyright © ASCE 2011.
Building damage assessment for deep excavations in Singapore and the influence of building stiffness
Resumo:
One of the biggest issues for underground construction in a densely built-up urban environment is the potentially adverse impact on buildings adjacent to deep excavations. In Singapore, a building damage assessment is usually carried out using a three-staged approach to assess the risk of damage caused by major underground construction projects. However, the tensile strains used for assessing the risk of building damage are often derived using deflection ratios and horizontal strains under 'greenfield' conditions. This ignores the effects of building stiffness and in many cases may be conservative. This paper presents some findings from a study on the response of buildings to deep excavations. Firstly, the paper discusses the settlement response of an actual building - the Singapore Art Museum - adjacent to a deep excavation. By comparing the monitored building settlement with the adjacent ground settlement markers, the influence of building stiffness in modifying the response to excavation-induced settlements is observed. Using the finite element method, a numerical study on the building response to movements induced by deep excavations found a consistent relationship between the building modification factor and a newly defined relative bending stiffness of the building. This relationship can be used as a design guidance to estimate the deflection ratio in a building from the greenfield condition. By comparing the case study results with the design guidance developed from finite element analysis, this paper presents some important characteristics of the influence of building stiffness on building damages for deep excavations.
Resumo:
A 2.5-D and 3-D multi-fold GPR survey was carried out in the Archaeological Park of Aquileia (northern Italy). The primary objective of the study was the identification of targets of potential archaeological interest in an area designated by local archaeological authorities. The second geophysical objective was to test 2-D and 3-D multi-fold methods and to study localised targets of unknown shape and dimensions in hostile soil conditions. Several portions of the acquisition grid were processed in common offset (CO), common shot (CSG) and common mid point (CMP) geometry. An 8×8 m area was studied with orthogonal CMPs thus achieving a 3-D subsurface coverage with azimuthal range limited to two normal components. Coherent noise components were identified in the pre-stack domain and removed by means of FK filtering of CMP records. Stack velocities were obtained from conventional velocity analysis and azimuthal velocity analysis of 3-D pre-stack gathers. Two major discontinuities were identified in the area of study. The deeper one most probably coincides with the paleosol at the base of the layer associated with activities of man in the area in the last 2500 years. This interpretation is in agreement with the results obtained from nearby cores and excavations. The shallow discontinuity is observed in a part of the investigated area and it shows local interruptions with a linear distribution on the grid. Such interruptions may correspond to buried targets of archaeological interest. The prominent enhancement of the subsurface images obtained by means of multi-fold techniques, compared with the relatively poor quality of the conventional single-fold georadar sections, indicates that multi-fold methods are well suited for the application to high resolution studies in archaeology.