872 resultados para etching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel implementation of an optical chemsensor device is reported based on long-period fiber grating structures ultraviolet-inscribed in D-fiber, with sensitivity enhancement by cladding etching. The results of a comparative study using D-fiber devices and similar structures in standard optical fiber reveal that the D-fiber devices offer substantially greater sensitivity both with and without etching. Based on a calibrated response to changes in refractive index, the grating devices have been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a dual-parameter optical sensor device achieved by UV inscription of a hybrid long-period grating-fiber Bragg grating structure in D fiber. The hybrid configuration permits the detection of the temperature from the latter's response and measurement of the external refractive index from the former's response. In addition, the host D fiber permits effective modification of the device's sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating its potential capability to detect concentration changes as small as 0.01%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have experimentally investigated the mode dispersion property and refractive index sensitivity of dual-peak long-period fiber gratings (LPGs) that were sensitized by hydrofluoric acid (HF) etching. The nature of the coupled cladding modes close to the dispersion turning point makes the dual-peak LPGs ultrasensitive to cladding property, permitting a fine tailoring of the mode dispersion and index sensitivity by the light cladding etching method using HF acid of only 1% concentration. As an implementation of an optical biosensor, the etched device was used to detect the concentration of hemoglobin protein in a sugar solution, showing a sensitivity as high as 20 nm/1%. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface. © 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering ceramics are often difficult to prepare metallographically because of their hardness, wear resistance and chemical inertness. Two silicon carbides, a silicon nitride and a sialon, are prepared and etched using several different techniques. The most efficient methods are identified. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new concept of biochemical sensor device based on long-period grating structures UV-inscribed in D-fiber. The surrounding-medium refractive index sensitivity of the devices has been enhanced significantly by a hydrofluoric acid etching process. The devices have been used to measure the sugar concentrations showing clearly an encoding relation between the chemical concentration and the grating spectral response, demonstrating their capability for potential biochemical sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a high sensitivity biosensor by fine tailoring mode dispersion and sensitivity of dual-peak LPGs using light-cladding-etching method. The etched device has been used to detect concentration of Hemoglobin protein in sugar solution, showing a sensitivity as high as 20nm/1%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication of a refractive index (RI) sensor based on a liquid core fibre Bragg grating (FBG). A micro-slot FBG was created in standard telecom optical fibre employing the tightly focused femtosecond laser inscription aided chemical etching. A micro-slot with dimensions of 5.74(h) × 125(w) × 1388.72(l) μm was engraved across the whole fibre and along 1mm long FBG which gives advantage of a relatively robust liquid core waveguide. The device performed the refractive index sensitivity up to about 742.72 nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An examination of the selective etching mechanism of a 1-alkanethiol self-assembled monolayer (SAM) covered Au{111} surface using in-situ atomic force microscopy (AFM) and molecular resolution scanning tunnelling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au{111} surface and typically contains nanoscale non-uniformities such as pinholes, domain boundaries and monatomic depressions. During etching in a ferri/ferrocyanide water-based etchant, selective and preferential etching occurs at SAM covered Au(111) terrace and step edges where a lower SAM packing density is observed, resulting in triangular islands being relieved. The triangular islands are commensurate with the Au(111) lattice with their long edges parallel to its [11-0] direction. Thus, SAM etching is selective and preferential attack is localized to defects and step edges at sites of high molecular density contrast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian yolk platelets are composed of lipoprotein subunits arranged in an ordered crystalline structure. Freeze-etch electron microscopy of isolated Xenopus platelets provides a direct view of the structure of the crystal and aids the interpretation of fracture phenomena in lipoprotein systems. A study has been made both of fracture faces and of faces produced by fracturing and etching following partial dissolution of platelets in electrolyte solutions. In freeze-etch replicas, main body crystals appear to be composed of dimers. Rectangular and semihexagonal patterns are seen in fracture faces. Rectangular patterns are seen also in faces produced by partial dissolution and revealed by fracturing and etching. Dissolution faces with possible semihexagonal patterns are distinct but infrequent. Based on this evidence, a new closest-packing model of platelet structure is proposed using lipovitellin dimers as building blocks, with one molecule of the second major protein component, phosvitin, associated with each monomer of the lipovitellin dimer. © 1972 Academic Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-step etching technique for fine-grained calcite mylonites using 0.37% hydrochloric and 0.1% acetic acid produces a topographic relief which reflects the grain boundary geometry. With this technique, calcite grain boundaries become more intensely dissolved than their grain interiors but second phase minerals like dolomite, quartz, feldspars, apatite, hematite and pyrite are not affected by the acid and therefore form topographic peaks. Based on digital backscatter electron images and element distribution maps acquired on a scanning electron microscope, the geometry of calcite and the second phase minerals can be automatically quantified using image analysis software. For research on fine-grained carbonate rocks (e.g. dolomite calcite mixtures), this low-cost approach is an attractive alternative to the generation of manual grain boundary maps based on photographs from ultra-thin sections or orientation contrast images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis methods for electrochemical etching baths consisting of various concentrations of hydrofluoric acid (HF) and an additional organic surface wetting agent are presented. These electrolytes are used for the formation of meso- and macroporous silicon. Monitoring the etching bath composition requires at least one method each for the determination of the HF concentration and the organic content of the bath. However, it is a precondition that the analysis equipment withstands the aggressive HF. Titration and a fluoride ion-selective electrode are used for the determination of the HF and a cuvette test method for the analysis of the organic content, respectively. The most suitable analysis method is identified depending on the components in the electrolyte with the focus on capability of resistance against the aggressive HF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic requirement of a plasma etching process is fidelity of the patterned organic materials. In photolithography, a He plasma pretreatment (PPT) based on high ultraviolet and vacuum ultraviolet (UV/VUV) exposure was shown to be successful for roughness reduction of 193nm photoresist (PR). Typical multilayer masks consist of many other organic masking materials in addition to 193nm PR. These materials vary significantly in UV/VUV sensitivity and show, therefore, a different response to the He PPT. A delamination of the nanometer-thin, ion-induced dense amorphous carbon (DAC) layer was observed. Extensive He PPT exposure produces volatile species through UV/VUV induced scissioning. These species are trapped underneath the DAC layer in a subsequent plasma etch (PE), causing a loss of adhesion. Next to stabilizing organic materials, the major goals of this work included to establish and evaluate a cyclic fluorocarbon (FC) based approach for atomic layer etching (ALE) of SiO2 and Si; to characterize the mechanisms involved; and to evaluate the impact of processing parameters. Periodic, short precursor injections allow precise deposition of thin FC films. These films limit the amount of available chemical etchant during subsequent low energy, plasma-based Ar+ ion bombardment, resulting in strongly time-dependent etch rates. In situ ellipsometry showcased the self-limited etching. X-ray photoelectron spectroscopy (XPS) confirms FC film deposition and mixing with the substrate. The cyclic ALE approach is also able to precisely etch Si substrates. A reduced time-dependent etching is seen for Si, likely based on a lower physical sputtering energy threshold. A fluorinated, oxidized surface layer is present during ALE of Si and greatly influences the etch behavior. A reaction of the precursor with the fluorinated substrate upon precursor injection was observed and characterized. The cyclic ALE approach is transferred to a manufacturing scale reactor at IBM Research. Ensuring the transferability to industrial device patterning is crucial for the application of ALE. In addition to device patterning, the cyclic ALE process is employed for oxide removal from Si and SiGe surfaces with the goal of minimal substrate damage and surface residues. The ALE process developed for SiO2 and Si etching did not remove native oxide at the level required. Optimizing the process enabled strong O removal from the surface. Subsequent 90% H2/Ar plasma allow for removal of C and F residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel synthesis method for ordered mesoporous carbons is presented. The inverse replication of a silica template was achieved using the carbonization of sucrose within mesoporous KIT-6. Instead of liquid acid etching, as in classical nanocasting, a novel dry chlorine etching procedure for template removal is presented for the first time. The resultant ordered mesostructured carbon material outperforms carbons obtained by conventional hard templating with respect to high specific micro- and mesopore volumes (0.6 and 1.6 cm3 g−1, respectively), due to the presence of a hierarchical pore system. A high specific surface area of 1671 m2 g−1 was achieved, rendering this synthesis route a highly convenient method to produce ordered mesoporous carbons.