989 resultados para epsilon(Nd)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiogenic isotope composition of neodymium (Nd) and strontium (Sr) are useful tools to investigate present and past oceanic circulation or input of terrigenous material. We present Nd and Sr isotope compositions extracted from different sedimentary phases, including early diagenetic Fe-Mn coatings, "unclean" foraminiferal shells, fossil fish teeth, and detritus of marine surface sediments (core-tops) covering the entire midlatitude South Pacific. Comparison of detrital Nd isotope compositions to deep water values from the same locations suggests that "boundary exchange" has little influence on the Nd isotope composition of western South Pacific seawater. Concentrations of Rare Earth Elements (REE) and Al/Ca ratios of "unclean" planktonic foraminifera suggest that this phase is a reliable recorder of seawater Nd isotope composition. The signatures obtained from fish teeth and "nondecarbonated" leachates of bulk sediment Fe-Mn oxyhydroxide coatings also agree with "unclean" foraminifera. Direct comparison of Nd isotope compositions extracted using these methods with seawater Nd isotope compositions is complicated by the low accumulation rates yielding radiocarbon ages of up to 24 kyr, thus mixing the signal of different ocean circulation modes. This suggests that different past seawater Nd isotope compositions have been integrated in authigenic sediments from regions with low sedimentation rates. Combined detrital Nd and Sr isotope signatures indicate a dominant role of the Westerly winds transporting lithogenic material from South New Zealand and Southeastern Australia to the open South Pacific. The proportion of this material decreases toward the east, where supply from the Andes increases and contributions from Antarctica cannot be ruled out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many marine radiogenic isotope records show both spatial and temporal variations, reflecting both the degree of mixing of distinct sources in the oceans and changes in the distribution of chemical weathering on the continents. However, changes in weathering and transport processes may themselves affect the composition of radiogenic isotopes released into seawater. The provenance of physically weathered material in the Labrador Sea, constrained through the use of Ar-Ar ages of individual detrital minerals, has been used to estimate the relative contributions of chemically weathered terranes releasing radiogenic isotopes into the Labrador Sea. A simple box-model approach for balancing observed Nd-isotope variations has been used to constrain the relative importance of localised input in the Labrador Sea, and the subsequent mixing of Labrador Sea Water into North Atlantic Deep-Water. The long-term pattern of erosion and deep-water formation around the North Atlantic seems to have been a relatively stable feature since 1.5 Ma, although there has been a dramatic shift in the nature of physical and chemical weathering affecting the release of Hf and Pb isotopes. The modelled Nd isotopes imply a relative decrease in water mass advection into the Labrador Sea between 2.4 and 1.5 Ma, accompanied by a decrease in the rate of overturning, possibly caused by an increased freshwater input into the Labrador Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in circulation associated with the shoaling of the Isthmus of Panama and the Caribbean carbonate crash in the Miocene were investigated using Nd isotopes from fossil fish teeth and debris from two sites in the Caribbean Basin (Ocean Drilling Program Sites 998 and 999) and two sites in the eastern equatorial Pacific (Sites 846 and 1241). The total range for e-Nd values measured from 18 to 4.5 Ma in the Caribbean is -7.3 to 0. These values are higher than Atlantic water masses (~-11) and range up to values equivalent to contemporaneous Pacific water masses, confirming that flow into the Caribbean Basin was composed of a mixture of Pacific and Atlantic waters, with an upper limit of almost pure Pacific-sourced waters. Throughout the Caribbean record, particularly during the carbonate crash (10-12 Ma), low carbonate mass accumulation rates (MARs) correlate with more radiogenic e-Nd values, indicating increased flow of corrosive Pacific intermediate water into the Caribbean Basin during intervals of dissolution. This flow pattern agrees with results from general ocean circulation models designed to study the effect of the shoaling of the Central American Seaway. Low carbonate MARs and high e-Nd values also correlate with intervals of increased Northern Component Water production and, therefore, enhanced conveyor circulation, suggesting that the conveyor may respond to changes in circulation associated with shoaling of the Central American Seaway. Reduced Pacific throughflow related to shoaling of the seaway led to a gradual increase in carbonate preservation and more Atlantic-like e-Nd values following the carbonate crash.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Nd and Sr isotopic compositions of Quaternary glacial and glacimarine siliciclastic sediments deposited along the margin of southeast Greenland were determined to assess the roles of the Greenland, Iceland, and more distal ice sheets in delivering detritus to this portion of the northern North Atlantic. The isotopic compositions of detritus generated by portions of the southern Greenland Ice Sheet were defined through measurements of till and trough mouth fan sediments. Massive diamicts from the Scoresby Sund trough mouth fan show a restricted range of e-Nd (-11.8 to -16.6) and 87Sr/86Sr (0.7192-0.7246) consistent with their derivation from mixtures of sediments derived from Paleoproterozoic and/or Caledonian basement and Tertiary Greenland basalts. Further south at Kangerlussuaq, till isotopic compositions covary with the underlying basement type, with low e-Nd values in the inner fiord (-18.1) reflecting the erosion of the local Precambrian gneisses, but with higher e-Nd values (-2.3 to 2.5) found where the trough crosses East Greenland Tertiary basalts. Fine-grained (< 63 µm) sediments deposited along the southeast Greenland margin also show regular spatial isotopic variations. Ambient sediments and ice-rafted detritus in the southern Irminger Basin trend towards low e-Nd values (to ~ -28) and 87Sr/86Sr ratios (~ 0.711 to ~ 0.715) and are likely derived from proximal Archean gneisses of SE Greenland. Further north in the northern Irminger and Blosseville Basins, sediments trend toward much higher e-Nd (> -4) and low 87Sr/86Sr (< 0.709) reflecting a component derived from the local Iceland volcanic rocks and/or the East Greenland Tertiary basalts. In all three regions, the locally-derived detritus is intermixed with sediment with an intermediate e-Nd value (~ -10) and 87Sr/86Sr (~ 0.718) that was likely delivered by icebergs emanating from the Eurasian Ice Sheets and not from eastern Greenland. Deposition of glacial sediments from both proximal and distal (Eurasian) sources occurred adjacent to SE Greenland throughout the past 50 Ka, with periodic increases in IRD deposition at various times including those of Heinrich events 1, 2 and 4. These results suggest that at least the southern portions of the Greenland Ice Sheet experienced periodic instabilities during the Last Glacial period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.