994 resultados para enzyme mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the structural and functional alterations of SERCA in rats suffering from adjuvant arthritis (AA). AA was induced by intradermal administration of Mycobacterium butyricum (MB) to the base of the tail of Lewis rats. Injury of SERCA from skeletal muscles of AA rats was analyzed on days 7, 14, 21 and 28 after MB injection. Neither fragmentation, aggregation of SERCA protein, alterations in SH groups, nor oxidation of phosphatidylcholines and phosphatidylethanolamines in SR vesicles were observed in animals with AA. The only ROS/RNS modification was increased formation of nitrotyrosine. The activity of SERCA from AA animals decreased on day 21 after MB injection and was associated with a significant increase of protein carbonyls in sarcoplasmic reticulum (SR). In contrast, on day 28 an increase of SERCA activity was observed and protein carbonyl level reversed to control level. Concerning kinetic parameters, maximum reaction velocity (Vmax) decrease and increase was observed with respect to both substrates (Ca, ATP) on days 21 and 28, respectively, suggesting possible conformational changes of the enzyme. These changes were not associated with alterations in nucleotide binding site situated in cytosol, but rather with tryptophan fluorescence intensity ratio (cytosol/membrane) related to the transmembrane domain of SERCA. Elevated SERCA activity on day 28 was caused by its higher expression. Acidic phospholipids (PA), probably present in SR of AA rats, may contribute to the elevation of Ca-ATPase activity, as PA administration in vitro increased this activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue transglutaminase (tTG) is a Ca2+-dependent enzyme which cross-links proteins via e(g-glutamyl)lysine bridges. There is increasing evidence that tTG is involved in wound repair and tissue stabilization, as well as in physiological mechanisms leading to cell death. To investigate the role of this enzyme in tissue wounding leading to loss of Ca2+ homoeostasis, we initially used a model involving electroporation to reproduce cell wounding under controlled conditions. Two cell models were used whereby tTG expression is regulated either by antisense silencing in ECV 304 cells or by using transfected Swiss 3T3 cells in which tTG expression is under the control of the tet regulatory system. Using these cells, loss of Ca2+ homoeostasis following electroporation led to a tTG-dependent formation of highly cross-linked proteinaceous shells from intracellular proteins. Formation of these structures is dependent on elevated intracellular Ca2+, but it is independent of intracellular proteases and is near maximal after only 20min post-wounding. Using labelled primary amines as an indicator of tTG activity within these 'wounded cells', we demonstrate that tTG modifies a wide range of proteins that are present in both the perinuclear and intranuclear spaces. The demonstration of entrapped DNA within these shell structures, which showed limited fragmentation, provides evidence that the high degree of transglutaminase cross-linking results in the prevention of DNA release, which may serve to dampen any subsequent inflammatory response. Comparable observations were shown when monolayers of cells were mechanically wounded by scratching. In this second model of cell wounding, redistribution of tTG activity to the extracellular matrix was also demonstrated, an effect which may serve to stabilize tissues post-trauma, and thus contribute to the maintenance of tissue integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Drosophila melanogaster genome contains only one CPT1 gene (Jackson, V. N., Cameron, J. M., Zammit, V. A., and Price, N. T. (1999) Biochem. J. 341, 483-489). We have now extended our original observation to all insect genomes that have been sequenced, suggesting that a single CPT1 gene is a universal feature of insect genomes. We hypothesized that insects may be able to generate kinetically distinct variants by alternative splicing of their single CPT1 gene. Analysis of the insect genomes revealed that (a) the single CPT1 gene in each and every insect genome contains two alternative exons and (ii) in all cases, the putative alternative splicing site occurs within a small region corresponding to 21 amino acid residues that are known to be essential for the binding of substrates and of malonyl-CoA in mammalian CPT1A.Weperformed PCR analyses of mRNA from different Drosophila tissues; both of the anticipated splice variants of CPT1mRNAwere found to be expressed in all of the tissues tested (both in larvae and adults), with the expression level for one of the splice variants being significantly different between flight muscle and the fat body of adult Drosophila. Heterologous expression of the full-length cDNAs corresponding to the two putative variants of Drosophila CPT1 in the yeast Pichia pastoris revealed two important differences between the properties of the two variants: (i) their affinity (K 0.5) for one of the substrates, palmitoyl-CoA, differed by 5-fold, and (ii) the sensitivity to inhibition by malonyl-CoA at fixed, higher palmitoyl-CoA concentrations was 2-fold different and associated with different kinetics of inhibition. These data indicate that alternative splicing that specifically affects a structurally crucial region of the protein is an important mechanism through which functional diversity of CPT1 kinetics is generated from the single gene that occurs in insects. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a potential biocatalyst for use in asymmetric synthesis. The mechanisms of CPO catalysis are therefore of interest. The halogenation reaction, one of several chemical reactions that CPO catalyzes, is not fully understood and is the subject of this dissertation. The mechanism by which CPO catalyzes halogenation is disputed. It has been postulated that halogenation of substrates occurs at the active site. Alternatively, it has been proposed that hypochlorous acid, produced at the active site via oxidation of chloride, is released prior to reaction, so that halogenation occurs in solution. The free-solution mechanism is supported by the observation that halogenation of most substrates often occurs non-stereospecifically. On the other hand, the enzyme-bound mechanism is supported by the observation that some large substrates undergo halogenation stereospecifically. The major purpose of this research is to compare chlorination of the substrate β-cyclopentanedione in the two environments. One study was of the reaction with limited hydration because such a level of hydration is typical of the active site. For this work, a purely quantum mechanical approach was used. To model the aqueous environment, the limited hydration environment approach is not appropriate. Instead, reaction precursor conformations were obtained from a solvated molecular dynamics simulation, and reaction of potentially reactive molecular encounters was modeled with a hybrid quantum mechanical/molecular mechanical approach. Extensive work developing parameters for small molecules was pre-requisite for the molecular dynamics simulation. It is observed that a limited and optimized (active-site-like) hydration environment leads to a lower energetic barrier than the fully solvated model representative of the aqueous environment at room temperature, suggesting that the stable water network near the active site is likely to facilitate the chlorination mechanism. The influence of the solvent environment on the reaction barrier is critical. It is observed that stabilization of the catalytic water by other solvent molecules lowers the barrier for keto-enol tautomerization. Placement of water molecules is more important than the number of water molecules in such studies. The fully-solvated model demonstrates that reaction proceeds when the instantaneous dynamical water environment is close to optimal for stabilizing the transition state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment of type I galactosemia. The mechanism of the enzyme is not fully elucidated. Molecular dynamics (MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted that two regions (residues 174-179 and 231-240) had different dynamics as a consequence. Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg- 228. These three residues were identified as important in catalysis in previous computational studies on human galactokinase. Alteration of Arg-105 to methionine resulted in a modest reduction in activity with little change in stability. When Arg-228 was changed to methionine, the enzyme’s interaction with both ATP and galactose was affected. This variant was significantly less stable than the wild-type protein. Changing Glu-174 to glutamine (but not to aspartate) resulted in no detectable activity and a less stable enzyme. Overall, these combined in silico and in vitro studies demonstrate the importance of a negative charge at position 174 and highlight the critical role of the dynamics in to key regions of the protein. We postulate that these regions may be critical for mediating the enzyme’s structure and function. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orotidine 5′-monophosphate decarboxylase (OMPDC) achieves a rarely paralleled rate acceleration, yet the catalytic basis prompting this enhancement have yet to be fully elucidated. To accomplish decarboxylation, OMPDC must overcome the high energy barrier due to the localized anionic charge of the intermediate. Mechanistic studies employing enzyme mutagenesis and product or intermediate analogues were used to investigate possible transition state stabilization by a carbene resonance structure. Viability of the carbene structure depends upon a key hydrogen bond between O4 of the substrate and the amide backbone of a conserved serine or threonine. Substitution of the conserved residue with Pro resulted in a kcat/KM of 1 M-1s-1; deletion of the FUMP O4 resulted in a product analogue that does not undergo H6 exchange or inhibit decarboxylation. Hence, indirect evidence reveals the O4-backbone interaction plays an important role for binding and catalysis. OMPDC likely has honed multiple mechanisms to attain its remarkable catalysis. The successful crystallizations of OMPDC a decade ago sparked hypotheses that structure and sequence conserved residues induced productive strain on the substrate-enzyme complex. Here, we demonstrate a new source of stress: a hydrophobic pocket adjacent to the OMP carboxylate that exhibits kinetic parameters characteristic of substrate destabilization. Substitution of these residues with hydrophilic side-chains, by providing hydrogen-bonding partners, decreased kcat by 10 to 10^4–fold. The same substitutions display very little change in the rate of product H6 exchange, supporting that this hydrophobic pocket affects the substrate-enzyme complex before the transition state. We also provide evidence that hydrophilic residues can insert water molecules into the pocket with detrimental effects to catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the effect and mechanism of action of Ermiao san (EMS), a traditional Chinese herbal formula, on inflammation development and production of inflammatory mediators in adjuvantinduced arthritis (AIA). Methods: AIA was induced by injection of 0.1 ml Freund’s complete adjuvant (FCA, 10 mg/ml) in the left hind footpad of the rats. AIA rats were intragastricly treated with 0.5, 1, 2 g/kg EMS or 0.1 g/kg methotrexate from day 7 to 28 after FCA challenge. Foot volume and histological score were measured. Osteoclast number was calculated by tartrate-resistant acid phosphatase (TRAP) staining assay. Levels of prostaglandin (PG) E2, tumor necrosis factor (TNF) -α and interleukin (IL)-1β in serum were determined by enzyme-linked immunosorbent assay (ELISA) while the level of nitric oxide (NO) in serum was analyzed by Griess reaction method. Results: Foot volume, histological score, osteoclast number and serum levels of TNF-α, IL-1β, PGE2 and NO were all increased in AIA group rats on day 28 after FCA challenge (all p < 0.01) compared with control. EMS (1 and 2 g/kg) significantly decreased the foot volume of AIA rats by 10 % (p < 0.05) and 19 % (p < 0.01), respectively, compared with AIA group. Furthermore, 1 and 2 g/kg EMS significantly reduced histological score by about 28 % (p < 0.05) and 46 % (p < 0.01), respectively, as well as osteoclast number by 12 % (p < 0.05) and 15 % (p < 0.05), respectively, compared with AIA group. In addition, 1 and 2 g/kg EMS significantly decreased the serum levels of TNF-α about 23 % (p < 0.05) and 43 % (p < 0.01), IL-1β by15 % (p < 0.05) and 26 % (p < 0.01), NO 13 % (p < 0.05) and 26 % (p < 0.01) as well as PGE2 by 11 % (p < 0.05) and 15 % (p < 0.01), respectively, compared with AIA group. Conclusion: These results suggest that EMS probably alleviates arthritis development and joint destruction by decreasing the production of inflammatory mediators in AIA rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the activity and mechanism of action of arbidol against Hantaan virus (HTNV) activity by modulating inflammation via TLR-4 pathway. Methods: HUVEC cells infected with HTNV 76-118 were treated with serially diluted arbidol solutions at -2h (2 h before viral infection, pre-treatment mode), 0 h (at the same time as viral infection, simultaneous treatment mode) or 2 h (2 h after viral infection, post-treatment mode). The transcript levels of TLR4 were detected by semi-quantitative reverse transcription-PCR (RT-PCR) at 6, 12, 18, and 24 h later. The levels of iNOS and TNF-α were examined using enzyme-linked immunosorbent assay (ELISA). Results: Pre-treatment with arbidol, rather than simultaneous treatment or post-treatment, effectively inhibited up-regulation of cellular TLR4 expression (up to 40 ± 6.1 % inhibition) and activity of supernatant iNOS induced by HTNV infection(up to 44.1 ± 9.4 % inhibition), as well as in a LPSstimulated inflammatory endothelial cell. Arbidol decreased the elevated TNF-α levels induced by LPS stimulation. Conclusion: These results are the first evidence that arbidol modulates viral PRRs signaling and its consequential inflammatory cytokine/chemokine response during hantavirus infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.