976 resultados para enzyme characterization
Resumo:
Three β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) catalyze the oxidative conversion of Δ5-3β-hydroxysteroids to the Δ4-3-keto configuration and is therefore essential for the biosynthesis of all classes of hormonal steroids, namely progesterone, glucocorticoids, mineralocorticoids, androgens, and estrogens. Using human 3β-HSD cDNA as probe, a human 3β-HSD gene was isolated from a λ-EMBL3 library of leucocyte genomic DNA. A fragment of 3β-HSD genomic DNA was also obtained by amplification of genomic DNA using the polymerase chain reaction. The 3β-HSD gene contains a 5′-untranslated exon of 53 base pairs (bp) and three successive translated exons of 232, 165, and 1218 bp, respectively, separated by introns of 129, 3883, and 2162 bp. The transcription start site is situated 267 nucleotides upstream from the ATG initiating codon. DNA sequence analysis of the 5′-flanking region reveals the existence of a putative TATA box (ATAAA) situated 28 nucleotides upstream from the transcription start site while a putative CAAT binding sequence is located 57 nucleotides upstream from the TATA box. Expression of a cDNA insert containing the coding region of 3β-HSD in nonsteroidogenic cells shows that the gene encodes a single 42-kDa protein containing both 3β-hydroxysteroid dehydrogenase and Δ5-Δ4-isomerase activities. Moreover, all natural steroid substrates tested are transformed with comparable efficiency by the enzyme. In addition to its importance for studies of the regulation of expression of 3β-HSD in gonadal as well as peripheral tissues, knowledge of the structure of the human 3β-HSD gene should permit investigation of the molecular defects responsible for 3β-HSD deficiency, the second most common cause of adrenal hyperplasia in children.
Resumo:
Lipoprotein(a) (Lp(a)) has been identified as an emerging risk factor for the development of vascular diseases. The Lp(a) particle is assembled in a 2-step process upon secretion of the LDL and apo(a) components from hepatocytes. Work done by the Koschinsky group has identified an oxidase-like activity present in the conditioned medium (CM) harvested from human hepatoma (HepG2), as well as HEK 293 (human endothelian kidney) cells that catalyzes the rate of covalent Lp(a) formation. We have taken a candidate enzyme approach to identifying this oxidase activity. Specifically, we have proposed that the QSOX (Quiescin/sulfhydryl oxidase) is responsible for catalysis of covalent Lp(a) assembly. An oxidase activity assay developed by Dr. Thorpe (University of Delaware) was used to detect QSOX1 in CM harvested from cultured cell lines that catalyze covalent Lp(a) assembly. In addition, the QSOX1 transcript was identified in each cell line and quantified with the use of Real-Time RT-PCR. Quantitative assays of covalent Lp(a) assembly were performed to study some characteristics of the unkwown oxidase activity. First, conditioned medium was dialyzed through a 5 kDa cutoff, as this has previously been shown to reduce the aforementioned oxidase activity. Purified QSOX was then added back to the reaction and the rate of catalysis was observed. The addition of QSOX appeared to enhance the rate of covalent Lp(a) assembly in a dose-dependent manner. Additional covalent Lp(a) assembly assays were performed where various chemicals were added to determine whether Lp(a) assembly was affected. The addition of EDTA did not affect covalent assembly, suggesting that the oxidase activity may not be metallo-dependent. Moreover, dose-dependent addition of Calcium, DTT, Copper and glutathione to dialyzed medium also did not affect the rate of Lp(a) assembly. Taken together, these studies will aid in identifying the nature of the oxidase activity that catalyzes covalent Lp(a) assembly. This will provide us with valuable information on how Lp(a) particles are assembled, and may lead to the development of drugs inhibiting Lp(a) formation.
Resumo:
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a human plasma zymogen that acts as a molecular link between the coagulation and fibrinolytic cascades. TAFI can be activated by thrombin and plasmin but the reaction is enhanced significantly when thrombin is in a complex with the endothelial cofactor thrombomodulin (TM). The in vitro properties of TAFI have been extensively characterized. Activated TAFI (TAFIa) is a thermally unstable enzyme that attenuates fibrinolysis by catalyzing the removal of basic residues from partially degraded fibrin. The in vivo role of the TAFI pathway, however, is poorly defined and very little is known about the role of different activators in regulating the TAFI pathway. In the present study, we have constructed and characterized various TAFI mutants that are resistant to activation by specific activators. Based on peptide sequence studies, these mutants were constructed by altering key amino acid residues surrounding the scissile R92-A93 bond. We measured the thermal stabilities of all our mutants and found them to be similar to wild type TAFI. We have identified that the TAFI mutants P91S, R92K, and S90P are impaired in activation by thrombin or thrombin-TM, thrombin alone, and thrombin alone or plasmin, respectively. The TAFI mutants A93V and S94V were predicted to be resistant to activation by plasmin but this was not observed. The triple mutant, DVV was not activated by any of the aforementioned activators. Finally, we have used in vitro fibrin clot lysis assays to evaluate the antifibrinolytic potential of our variants and were able to correlate their effectiveness with their respective activation kinetics. In summary, we have developed activation resistant TAFI variants that can potentially be used to explore the role of the TAFI pathway in vivo.
Resumo:
This study presents a reproducible, cost-effective in vitro encrustation model and, furthermore, describes the effects of components of the artificial urine and the presence of agents that modify the action of urease on encrustation on commercially available ureteral stents. The encrustation model involved the use of small-volume reactors (700 mL) containing artificial urine and employing an orbital incubator (at 37 degrees C) to ensure controlled stirring. The artificial urine contained sources of calcium and magnesium (both as chlorides), albumin and urease. Alteration of the ratio (% w/w) of calcium salt to magnesium salt affected the mass of encrustation, with the greatest encrustation noted whenever magnesium was excluded from the artificial urine. Increasing the concentration of albumin, designed to mimic the presence of protein in urine, significantly decreased the mass of both calcium and magnesium encrustation until a plateau was observed. Finally, exclusion of urease from the artificial urine significantly reduced encrustation due to the indirect effects of this enzyme on pH. Inclusion of the urease inhibitor, acetohydroxamic acid, or urease substrates (methylurea or ethylurea) into the artificial medium markedly reduced encrustation on ureteral stents. In conclusion, this study has described the design of a reproducible, cost-effective in vitro encrustation model. Encrustation was markedly reduced on biomaterials by the inclusion of agents that modify the action of urease. These agents may, therefore, offer a novel clinical approach to the control of encrustation on urological medical devices. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Replication of the ~30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.
Resumo:
A pectinase was identified and isolated from a commercial Aspergillus niger pectinase preparation. The crude enzyme preparation, which was prepared by precipitation of the water extract of the culture of A. niger with ammonium sulfate, was further fractionated by three steps of chromatography, i. e., cation exchange, hydrophobic interaction and onion exchange, to obtain an electrophoretically homogeneous pectinase. The molecular weight of the purified enzyme was estimated by SDS-PAGE to be about 40.4 kDa under both nonreducing and reducing conditions, with the optimum pH at 5.0 and the optimum temperature at 36C. The enzyme was stable at temperatures below 35C. The partial N-terminal ammo acid sequence data analysis of the first 19 amina acids of the obtained pectinase revealed 94.7% and 89.5% homology with two reported pectinases from A. niger.
Resumo:
Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.
Resumo:
The production of functional nidovirus replication-transcription complexes involves extensive proteolytic processing by virus-encoded proteases. In this study, we characterized the viral main protease (Mpro) of the type species, White bream virus (WBV), of the newly established genus Bafinivirus (order Nidovirales, family Coronaviridae, subfamily Torovirinae). Comparative sequence analysis and mutagenesis data confirmed that the WBV Mpro is a picornavirus 3C-like serine protease that uses a Ser-His-Asp catalytic triad embedded in a predicted two-ß-barrel fold, which is extended by a third domain at its C terminus. Bacterially expressed WBV Mpro autocatalytically released itself from flanking sequences and was able to mediate proteolytic processing in trans. Using N-terminal sequencing of autoproteolytic processing products we tentatively identified Gln?(Ala, Thr) as a substrate consensus sequence. Mutagenesis data provided evidence to suggest that two conserved His and Thr residues are part of the S1 subsite of the enzyme's substrate-binding pocket. Interestingly, we observed two N-proximal and two C-proximal autoprocessing sites in the bacterial expression system. The detection of two major forms of Mpro, resulting from processing at two different N-proximal and one C-proximal site, in WBV-infected epithelioma papulosum cyprini cells confirmed the biological relevance of the biochemical data obtained in heterologous expression systems. To our knowledge, the use of alternative Mpro autoprocessing sites has not been described previously for other nidovirus Mpro domains. The data presented in this study lend further support to our previous conclusion that bafiniviruses represent a distinct group of viruses that significantly diverged from other phylogenetic clusters of the order Nidovirales.
Resumo:
In common with other terrestrial flatworms, the mucus produced by Artioposthia triangulata may have a number of functions, including protection from environmental factors and from predators, and it provides the flatworm with lubrication for movement and adhesion. No previous work has been carried out on the characterization of proteins present in the mucus of A. triangulata and this study was a preliminary investigation of the mucus. Mucus was analysed by SDS-polyacrylamide gel electrophoresis, biotinylated peptide affinity probes and the API ZYM enzyme detection kit. Results have revealed the presence of at least 40 polypeptides in the mucus and further studies with biotinylated probes have characterised one of them as a chymotrypsin-like serine protease. (C) 1998 Elsevier Science Inc.
Resumo:
Polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases (PNPTs) constitute a family of eukaryotic and prokaryotic membrane proteins that catalyze the transfer of a sugar-1-phosphate to a phosphoisoprenyl lipid carrier. All PNPT members share a highly conserved 213-Valine-Phenylalanine-Methionine-Glycine-Aspartic acid-217 (VFMGD) motif. Previous studies using the MraY protein suggested that the aspartic acid residue in this motif, D267, is a nucleophile for a proposed double-displacement mechanism involving the cleavage of the phosphoanhydride bond of the nucleoside. Here, we demonstrate that the corresponding residue in the E. coli WecA, D217, is not directly involved in catalysis, as its replacement by asparagine results in a more active enzyme. Kinetic data indicate that the D217N replacement leads to more than twofold increase in V(max) without significant change in the K(m) for the nucleoside sugar substrate. Furthermore, no differences in the binding of the reaction intermediate analog tunicamycin were found in D217N as well as in other replacement mutants at the same position. We also found that alanine substitutions in various residues of the VFMGD motif affect to various degrees the enzymatic activity of WecA in vivo and in vitro. Together, our data suggest that the highly conserved VFMGD motif defines a common region in PNPT proteins that contributes to the active site and is likely involved in the release of the reaction product.
Resumo:
The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.
Resumo:
The lpcA locus has been identified in Escherichia coli K12 novobiocin-supersensitive mutants that produce a short lipopolysaccharide (LPS) core which lacks glyceromannoheptose and terminal hexoses. We have characterized lpcA as a single gene mapping around 5.3 min (246 kilobases) on the E. coli K12 chromosome and encoding a 22.6-kDa cytosolic protein. Recombinant plasmids containing only lpcA restored a complete core LPS in the E. coli strain chi711. We show that this strain has an IS5-mediated chromosomal deletion of 35 kilobases that eliminates lpcA. The LpcA protein showed discrete similarities with a family of aldose/ketose isomerases and other proteins of unknown function. The isomerization of sedoheptulose 7-phosphate, into a phosphosugar presumed to be D-glycero-D-mannoheptose 7-phosphate, was detected in enzyme reactions with cell extracts of E. coli lpcA+ and of lpcA mutants containing the recombinant lpcA gene. We concluded that LpcA is the phosphoheptose isomerase used in the first step of glyceromannoheptose synthesis. We also demonstrated that lpcA is conserved among enteric bacteria, all of which contain glyceromannoheptose in the inner core LPS, indicating that LpcA is an essential component in a conserved biosynthetic pathway of inner core LPS.
Resumo:
A recombinant cytoplasmic preparation of lysine: N6-hydroxylase, IucD398, with a deletion of 47 amino acids at the N-terminus, was purified to homogeneity. IucD398 is capable of N-hydroxylation of L-lysine upon supplementation with FAD and NADPH. The enzyme is stringently specific with L-lysine and (S)-2-aminoethyl-L-cysteine serving as substrates. Protonophores, FCCP and CCCP, as well as cinnamylidene, have been found to serve as potent inhibitors of lysine: N6-hydroxylation by virtue of their ability to interfere in the reduction of the flavin cofactor.
Resumo:
The aerobactin gene cluster in pColV-K30 consists of five genes (iucABCD iutA); four of these (iucABCD) are involved in aerobactin biosynthesis, whereas the fifth one (iutA) encodes the ferriaerobactin outer membrane receptor. iucD encodes lysine:N6-hydroxylase, which catalyzes the first step in aerobactin biosynthesis. Regardless of the method used for cell rupture, we have consistently found that IucD remains membrane bound, and repeated efforts to achieve a purified and active soluble form of the enzyme have been unsuccessful. To circumvent this problem, we have constructed recombinant IucD proteins with modified amino termini by creating three in-frame gene fusions of IucD to the amino-terminal amino acids of the cytoplasmic enzyme beta-galactosidase. Two of these constructs resulted in the addition to the iucD coding region of a hydrophilic leader sequence of 13 and 30 amino acids. The other construct involved the deletion of the first 47 amino acids of the IucD amino terminus and the addition of 19 amino acids of the amino terminus of beta-galactosidase. Cells expressing any of the three recombinant IucD forms were found to produce soluble N6-hydroxylysine. One of these proteins, IucD439, was purified to homogeneity from the soluble fraction of the cell lysates, and it was capable of participating in the biosynthesis of aerobactin, as determined in vitro by a cell-free system and in vivo by a cross-feeding bioassay. A medium ionic strength of 0.25 (250 mM NaCl) or higher was required to maintain the protein in a catalytically functional, tetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
An IgM mouse monoclonal antibody (McAb) Bf4 was produced to a surface polysaccharide of Bacteroides fragilis NCTC 9343. Immunoblotting showed that McAb Bf4 reacted strongly with a high molecular mass structure which was sensitive to oxidation with periodate but resisted protease treatment. An inhibition enzyme-linked immunosorbent assay (ELISA) indicated that McAb Bf4 did not cross react with the sixteen Bacteroides species and strains tested. Cells of B. fragilis NCTC 9343 recovered from the various interfaces of a Percoll discontinuous density gradient were tested in the inhibition ELISA. Bacteria from the 0-20%, 20-40% and 40-60% interfaces inhibited the ELISA; however, cells from the 60-80% interface did not. Electron microscopy with immunogold labelling showed that McAb Bf4 did not react with the extracellular fibrous network on bacteria recovered from the 0-20% interface, or the extracellular electron dense layer on cells from the 60-80% interface; however, it was associated with a surface structure on cells from the 20-40% interface. Growth in vivo did not enrich for bacteria with this structure.