946 resultados para energy-dispersive X-ray spectroscopy
Resumo:
A biological system for the biosynthesis of nanoparticles (NPs) and uptake of copper from wastewater, using dead biomass of Hypocrea lixii was analyzed and described for the first time. The equilibrium and kinetics investigation of the biosorption of copper onto dead, dried and live biomass of fungus were performed as a function of initial metal concentration, pH, temperature, agitation and inoculum volume. The high biosorption capacity was observed for dead biomass, completed within 60 min of contact, at pH 5.0, temperature of 40 °C and agitation speed of 150 rpm with a maximum copper biosorption of 19.0 mg g(-1). The equilibrium data were better described using the Langmuir isotherm and kinetic analysis indicated that copper biosorption follows a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the fungus were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). NPs were mainly spherical, with an average size of 24.5 nm, and were synthesized extracellularly. The X-ray diffraction (XRD) analysis confirms the presence of metallic copper particles. Infrared spectroscopy (FTIR) study revealed that the amide groups interact with the particles, which was accountable for the stability of NPs. This method further confirmed the presence of proteins as stabilizing and capping agents surrounding the copper NPs. These studies demonstrate that dead biomass of Hypocrea lixii provides an economic and technically feasible option for bioremediation of wastewater and is a potential candidate for industrial-scale production of copper NPs.
Resumo:
Solutions containing tin and fluoride exhibit remarkable anti-erosive properties with tin ions as a major agent. To elucidate its mechanism of action in dentine, the tin uptake on and in the tissue was investigated and related to histological findings and substance loss. Samples were treated twice daily, each treatment lasting for 2 min, with fluoride solutions [pH 4.5; 1,500 parts per million (p.p.m.) F] containing 2,100, 1,400, or 400 p.p.m. Sn as SnCl(2). In experiments 1 and 2, samples were eroded with citric acid (pH 2.3) six times each day, each treatment lasting for 5 min; in experiment 2, the demineralized organic matrix was continuously digested by collagenase; in experiment 3, no erosive challenges were performed. Sample surfaces and cross-sections were investigated using energy dispersive X-ray spectroscopy, scanning electron microscopy, and profilometry. Surface retention of tin was found in almost all treatment groups and was highest in experiment 2. On cross-sections, tin was retained within the organic matrix; in mineralized areas, tin was found mainly within a depth of 10 mum. Test solutions inhibited substance loss significantly; in experiment 2, the effect was dose-dependent. Erosion inhibition seemed to depend mainly on the incorporation of tin in the mineralized dentine when the organic portion was preserved, but on surface precipitation when the organic portion was continuously digested.
Resumo:
Recent claims of blood vessels extracted from dinosaur fossils challenge classical views of soft-tissue preservation. Alternatively, these structures may represent postdepositional,diagenetic biofilms that grew on vascular cavity surfaces within the fossil. Similar red, hollow, tube-shaped structures were recovered from well-preserved and poorly-preserved (abraded, desiccated, exposed) Upper Cretaceous dinosaur fossils in this study. Integration of light microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy was used to compare these vessel structures to the fossils from which they are derived. Vessel structures are typically 100-400 μm long, 0.5-1.5 μm thick, 10-40 μm in diameter and take on a wide range of straight, curved, andbranching morphologies. Interior surfaces vary from smooth to globular and typically contain spheres, rods, and fibrous structures (< 2 μm in diameter) incorporated into the surface. Exterior surfaces exhibit 2-μm-tall converging ridges, spaced 1-3 μm apart, that are sub-parallel to the long axis of the vessel structure. Fossil vascular cavities are typically coated with a smooth or grainy orange layer that shows a wide range of textures including smooth, globular, rough, ropy, and combinations thereof. Coatings tend to overlay secondary mineral crystals and framboids, confirming they are not primary structures of the fossil. For some cavity coatings, the surface that had been in contact with the bone exhibits a ridged texture, similar to that of vessel structures, having formed as a mold of the intravascular bone surface. Thus, vessel structures are interpreted as intact cavity coatings isolated after the fossil is demineralized. The presence of framboids and structures consistent in size and shape with bacteria cells, the abundance of iron in cavity coatings, and the growth of biofilms directly from the fossil that resemble respective cavity coatings support the hypothesis that vessel structures result from ironconsuming bacteria that form biofilms on the intravascular bone surfaces of fossil dinosaur bone. This also accounts for microstructures resembling osteocytes as some fossil lacunae are filled with the same iron oxide that comprises vessel structures andcoatings. Results of this study show that systematic, high-resolution SEM analyses of vertebrate fossils can provide improved insight on microtaphonomic processes, including the role of bacteria in diagenesis. These results conflict with earlier claims of dinosaurblood vessels and osteocytes.
Resumo:
PURPOSE: We report the clinical, morphological, and ultrastructural findings of 13 consecutively explanted opacified Hydroview(R) (hydrogel) intraocular lenses (IOLs). Our purpose was to provide a comprehensive account on the possible factors involved in late postoperative opacification of these IOLs. PATIENTS AND METHODS: Thirteen consecutive opacified hydrogel IOLs (Hydroview H 60 M, Bausch ; Lomb) were explanted due to the significant visual impairment they caused. The IOLs underwent macroscopical examination, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrophoresis for protein detection. Three unused control Hydroview IOLs served for comparison. RESULTS: Macroscopical examination showed a diffuse or localized grey-whitish opacification within the IOL optic. TEM confirmed the presence of lesions inside the optic in all the explanted IOLs and revealed 3 patterns of deep deposits: a) diffuse, thick, granular, electron-dense ones; b) small, thin, lattice-like ones, with prominent electron-lucent areas; and c) elongated electron-dense formations surrounded by electron-lucent halos. SEM showed surface deposits on four IOLs. EDS revealed oxygen and carbon in all IOLs and documented calcium, phosphorus, silicon and/or iron in the deposits. Two of the patients with iron in their IOLs had eye surgery prior to their phacoemulsification. Iron correlated well with the second TEM pattern of deep lesions, whereas calcium with the third TEM pattern. No protein bands were detected on electrophoresis. Control lenses did not show any ultrastructural or chemical abnormality. CONCLUSIONS: The present study supports the presence of chemical alterations inside the polymer of the optic in late postoperative opacification of Hydroview IOLs. This opacification does not follow a unique pathway but may present under different ultrastructular patterns depending on the responsible factors. Mechanical stress during surgery may initiate a sequence of events where ions such as calcium, phosphorus, silicon, and/or iron, participate in a biochemical cascade that leads to gradual alteration of the polymer network. Intraocular inflammation due to previous operation may be a factor inducing opacification through increase of iron-binding capacity in the aqueous humour. Calcification accounts only partially for the opacification noted in this type of IOL.
Resumo:
Tin-containing fluoride solutions can reduce erosive tissue loss, but the effects of the reaction between tin and enamel are still not clear. During a 10-d period, enamel specimens were cyclically demineralized (0.05 M citric acid, pH 2.3, 6 x 5 min d(-1)) and remineralized (between the demineralization cycles and overnight). In the negative-control group, no further treatment was performed. Three groups were treated (2 x 2 min d(-1)) with tin-containing fluoride solutions (400, 1,400 or 2,100 ppm Sn2+, all 1,500 ppm F-, pH 4.5). Three additional groups were treated with test solutions twice daily, but without demineralization. Tissue loss was determined profilometrically. Energy-dispersive X-ray spectroscopy was used to measure the tin content on and within three layers (10 mum each) beneath the surface. In addition, scanning electron microscopy was conducted. All test preparations significantly reduced tissue loss. Deposition of tin on surfaces was higher without erosion than with erosion, but no incorporation of tin into enamel was found without demineralization. Under erosive conditions, both highly concentrated solutions led to the incorporation of tin up to a depth of 20 mum; the less-concentrated solution led to small amounts of tin in the outer 10 mum. The efficacy of tin-containing solutions seems to depend mainly on the incorporation of tin into enamel.
Resumo:
This study reports the chemical composition of particles present along Greenland’s North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 μm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na₂SO₄, CaSO ₄, and CaCO₃ represent major soluble salts. For the first time, particles of CaMg(CO₃)₂ and Ca(NO₃)₂ 4H₂O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na₂SO₄) exceeds that of Ca salts (CaSO₄+ CaCO₃) during the Holocene (0.6–11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9–14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0–12.6 kyr B.P.) and the Last Glacial Maximum (15.0–26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.
Resumo:
We provide the first direct evidence that a number of water-soluble compounds, in particular calcium sulfate (CaSO4 2H2O) and calcium carbonate (CaCO3), are present as solid, micron-sized inclusions within the Greenland GRIP ice core. The compounds are detected by two independent methods: micro-Raman spectroscopy of a solid ice sample, and energy-dispersive X-ray spectroscopy of individual inclusions remaining after sublimation. CaSO4 2H2O is found in abundance throughout the Holocene and the last glacial period, while CaCO3 exists mainly in the glacial period ice. We also present size and spatial distributions of the micro-inclusions. These results suggest that water-soluble aerosols in the GRIP ice core are dependable proxies for past atmospheric conditions.
Resumo:
Diluted nitride self-assembled In(Ga)AsN quantum dots (QDs) grown on GaAs substrates are potential candidates to emit in the windows of maximum transmittance for optical fibres (1.3-1.55 μm). In this paper, we analyse the effect of nitrogen addition on the indium desorption occurring during the capping process of InxGa1−xAs QDs (x = l and 0.7). The samples have been grown by molecular beam epitaxy and studied through transmission electron microscopy (TEM) and photoluminescence techniques. The composition distribution inside the dots was determined by statistical moiré analysis and measured by energy dispersive X-ray spectroscopy. First, the addition of nitrogen in In(Ga)As QDs gave rise to a strong redshift in the emission peak, together with a large loss of intensity and monochromaticity. Moreover, these samples showed changes in the QDs morphology as well as an increase in the density of defects. The statistical compositional analysis displayed a normal distribution in InAs QDs with an average In content of 0.7. Nevertheless, the addition of Ga and/or N leads to a bimodal distribution of the Indium content with two separated QD populations. We suggest that the nitrogen incorporation enhances the indium fixation inside the QDs where the indium/gallium ratio plays an important role in this process. The strong redshift observed in the PL should be explained not only by the N incorporation but also by the higher In content inside the QDs
Resumo:
In this work we present the assessment of the structural and piezoelectric properties of Al(0.5-x)TixN0.5 compounds (titanium content menor que6% atomic), which are expected to possess improved properties than conventional AlN films, such as larger piezoelectric activity, thermal stability of frequency and temperature resistance. Al:Ti:N films were deposited from a twin concentric target of Al and Ti by reactive AC sputtering, which provided films with a radial gradient of the Ti concentration. The properties of the films were investigated as a function of their composition, which was measured by electron dispersive energy dispersive X-ray spectroscopy and Rutherford backscattering spectrometry. The microstructure and morphology of the films were assessed by X-ray diffraction and infrared reflectance. Their electroacoustic properties and dielectric constant were derived from the frequency response of BAW test resonators. Al:Ti:N films properties appear to be strongly dependent on the Ti content, which modifies the AlN wurtzite crystal structure leading to greater dielectric constant, lower sound velocities, lower electromechanical factor and moderately improved temperature coefficient of the resonant frequency.
Resumo:
This work presents a comprehensive optical characterization of Zn1−xMgxO thin films grown by spray pyrolysis (SP). Absorption measurements show the high potential of this technique to tune the bandgap from 3.30 to 4.11 eV by changing the Mg acetate content in the precursor solution, leading to a change of the Mg-content ranging from 0 up to 35%, as measured by transmission electron microscopy-energy dispersive x-ray spectroscopy. The optical emission of the films obtained by cathodoluminescence and photoluminescence spectroscopy shows a blue shift of the peak position from 3.26 to 3.89 eV with increasing Mg incorporation, with a clear excitonic contribution even at high Mg contents. The linewidth broadening of the absorption and emission spectra as well as the magnitude of the observed Stokes shift are found to significantly increase with the Mg content. This is shown to be related to both potential fluctuations induced by pure statistical alloy disorder and the presence of a tail of band states, the latter dominating for medium Mg contents. Finally, metal–semiconductor–metal photodiodes were fabricated showing a high sensitivity and a blue shift in the cut-off energy from 3.32 to 4.02 eV, i.e., down to 308 nm. The photodiodes present large UV/dark contrast ratios (102 − 107), indicating the viability of SP as a growth technique to fabricate low cost (Zn, Mg)O-based UV photodetectors reaching short wavelengths.
Resumo:
Catalisadores de Ni (10% em massa) suportado em matrizes mistas MgO-SiO2 foram aplicados na reação de reforma a vapor de glicerol. Os efeitos do teor de MgO como aditivo e do método de preparação foram avaliados frente às propriedades físico-químicas e texturais dos materiais; assim como à atividade, seletividade, estabilidade e formação de carbono na reforma a vapor do glicerol. Os catalisadores foram preparados com diferentes teores mássicos de MgO (10%, 30% e 50%) sobre SiO2 comercial, utilizando processo via seca (mistura física) e via úmida (impregnação sequencial com diferentes solventes: água, etanol e acetona). Foram utilizadas as técnicas de caracterização de espectroscopia de energia dispersiva de raios X, fisissorção de nitrogênio, difratometria de raios X, termogravimetria, difratometria de raios X in situ com O2, redução a temperatura programada com H2, difratometria de raios X in situ com H2, dessorção a temperatura programada com H2 e microscopia eletrônica de varredura. Foi observado que o Ni(II) interage de forma variada com os suportes com diferentes teores de MgO, e que a polaridade do solvente de impregnação utilizado no processo de preparação influencia as propriedades dos catalisadores. A fim de verificar a atividade, seletividade e deposição de carbono; os catalisadores foram testados na reação de reforma a vapor de glicerol a 600oC, por um período de 5h e razão molar água:glicerol de 12:1. Após as reações, os catalisadores foram novamente submetidos às análises de termogravimetria, difratometria de raios X e microscopia eletrônica de varredura, visando a caracterização dos depósitos de carbono obtidos durante o processo catalítico. Os catalisadores de matrizes mistas se mostraram ativos e apresentaram seletividades similares para os produtos gasosos CH4, CO e CO2, além de um alto rendimento em H2. Observou-se que a adição de MgO no suporte, aumentou a dispersão do Ni(II) no material, que por sua vez, influenciou na quantidade de carbono depositado ao longo da reação. A polaridade do solvente de impregnação também teve influência na dispersão metálica, sendo que, quanto menor a polaridade do solvente, maior foi a dispersão obtida no catalisador, e menor a deposição de carbono na reação. O material que apresentou o melhor desempenho catalítico frente ao rendimento de H2 e à deposição de carbono, foi o catalisador preparado com 30% de MgO com etanol como solvente de impregnação.
Resumo:
O processo tradicional de recuperação de metais de resíduos de equipamentos eletroeletrônicos (REEE) geralmente envolve processamento pirometalúrgico. Entretanto, o uso desta tecnologia para processar placas de circuito impresso (PCI) obsoletas pode levar à liberação de dioxinas e furanos, devido à decomposição térmica de retardantes de chama e resinas poliméricas presentes no substrato das placas. Portanto, este trabalho propõe uma rota hidrometalúrgica para recuperação de metais. O comportamento dos metais, com destaque para cobre, zinco e níquel, durante a lixiviação ácida, foi estudado em três temperaturas diferentes (35ºC, 65ºC e 75ºC), com e sem adição de um agente oxidante (peróxido de hidrogênio H2O2). A cinética de dissolução ácida desses metais foi estudada baseada na análise química por ICP-OES (Espectrometria de emissão ótica por plasma acoplado indutivamente) e EDX (Espectroscopia de fluorescência de raios-X por energia dispersiva). O balanço de massa e a análise química indicaram que a etapa de lixiviação sem adição de oxidante é pouco eficaz na extração dos metais, sendo responsável pela dissolução de menos do que 6% do total extraído. A 65ºC e H2SO4 1 mol/L, com adição de 5 mL de H2O2 (30%) a cada quinze minutos e densidade de polpa de 1 g / 10 mL, 98,1% do cobre, 99,9% do zinco e 99,0% do níquel foram extraídos após 4 horas. A cinética de dissolução desses metais é controlada pela etapa da reação química, seguindo, dependendo da temperatura, a equação 1 (1 XB)1/3 = k1.t ou a equação ln (1 XB) = k4.t.
Resumo:
The catalytic activity and durability of 2 wt.% Pd/Al2O3 in powder and washcoated on cordierite monoliths were examined for the liquid phase hydrodechlorination (LPHDC) of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs), also known as dioxins. NaOH was employed as a neutralizing agent, and 2-propanol was used as a hydrogen donor and a solvent. Fresh and spent powder and monolith samples were characterized by elemental analysis, surface area, hydrogen chemisorption, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and transmission electron microscopy/energy dispersive X-ray spectroscopy (TEM/EDX). Three reactor configurations were compared including the slurry and monolith batch reactors as well as the bubble loop column resulting in 100, 70, and 72% sample toxicity reduction, respectively, after 5 h of reaction. However, the slurry and monolith batch reactors lead to catalyst sample loss via a filtration process (slurry) and washcoat erosion (monolith batch), as well as rapid deactivation of the powder catalyst samples. The monolith employed in the bubble loop column remained stable and active after four reaction runs. Three preemptive regeneration methods were evaluated on spent monolith catalyst including 2-propanol washing, oxidation/reduction, and reduction. All three procedures reactivated the spent catalyst samples, but the combustion methods proved to be more efficient at eliminating the more stable poisons.
Resumo:
We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.