988 resultados para emission spectrum
Resumo:
We report the results of extensive follow-up observations of the gamma-ray pulsar J1732-3131, which has recently been detected at decametre wavelengths, and the results of deep searches for the counterparts of nine other radio-quiet gamma-ray pulsars at 34 MHz, using the Gauribidanur radio telescope. No periodic signal from J1732-3131 could be detected above a detection threshold of 8 sigma, even with an effective integration time of more than 40 h. However, the average profile obtained by combining data from several epochs, at a dispersion measure of 15.44 pc cm(-3), is found to be consistent with that from the earlier detection of this pulsar at a confidence level of 99.2 per cent. We present this consistency between the two profiles as evidence that J1732-3131 is a faint radio pulsar with an average flux density of 200-400 mJy at 34 MHz. Despite the extremely bright sky background at such low frequencies, the detection sensitivity of our deep searches is generally comparable to that of higher frequency searches for these pulsars, when scaled using reasonable assumptions about the underlying pulsar spectrum. We provide details of our deep searches, and put stringent upper limits on the decametre-wavelength flux densities of several radio-quiet gamma-ray pulsars.
Resumo:
In Part I of this thesis, a new magnetic spectrometer experiment which measured the β spectrum of ^(35)S is described. New limits on heavy neutrino emission in nuclear β decay were set, for a heavy neutrino mass range between 12 and 22 keV. In particular, this measurement rejects the hypothesis that a 17 keV neutrino is emitted, with sin^2 θ = 0.0085, at the 6δ statistical level. In addition, an auxiliary experiment was performed, in which an artificial kink was induced in the β spectrum by means of an absorber foil which masked a fraction of the source area. In this measurement, the sensitivity of the magnetic spectrometer to the spectral features of heavy neutrino emission was demonstrated.
In Part II, a measurement of the neutron spallation yield and multiplicity by the Cosmic-ray Underground Background Experiment is described. The production of fast neutrons by muons was investigated at an underground depth of 20 meters water equivalent, with a 200 liter detector filled with 0.09% Gd-loaded liquid scintillator. We measured a neutron production yield of (3.4 ± 0.7) x 10^(-5) neutrons per muon-g/cm^2, in agreement with other experiments. A single-to-double neutron multiplicity ratio of 4:1 was observed. In addition, stopped π^+ decays to µ^+ and then e^+ were observed as was the associated production of pions and neutrons, by the muon spallation interaction. It was seen that practically all of the π^+ produced by muons were also accompanied by at least one neutron. These measurements serve as the basis for neutron background estimates for the San Onofre neutrino detector.
Resumo:
The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.
Resumo:
Conical emission is investigated for Ti:sapphire femtosecond laser pulses propagating in water. The colored rings can be observed in the forward direction due to the constructive and destructive interference of transverse wavevector, which are induced by the spatio-temporal gradient of the free-electron density. With increasing input laser energy, due to filamentation and pulse splitting induced by the plasma created by multiphoton excitation of electrons from the valence band to the conduction band, the on-axis spectrum of the conical emission is widely broadened and strongly modulated with respect to input laser spectrum, and finally remains fairly constant at higher laser energy due to intensity clamping in the filaments.
Resumo:
I. PREAMBLE AND SCOPE
Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.
II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS
Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.
Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.
A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.
III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa
An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.
The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.
Resumo:
Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.
Resumo:
Structural and frequency upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride germanate glasses have been investigated. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network and has an important influence on the upconversion luminescence. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible upconversion mechanism was also estimated and evaluated. Intense upconversion luminescence indicates that Er3+/Yb3+-codoped oxychloride germanate glass is a promising laser material. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Frequency upconversion fluorescence property of Er3+-doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at similar to 805 cm(-1). The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor Delta T (Delta T = T-x-T-g) is 187 degrees C. Intense upconversion luminescence and good thermal stability indicate that Er3+-doped oxychloride germanate glass is a promising upconversion laser material.
Resumo:
Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Omega(t)(t = 2, 4, 6) were found to be Omega(2) = 3.27 x 10(-20) cm(2), Omega(4) = 1.15 x 10(-20) cm(2), and Omega(6) = 0.38 x 10(-20) cm(2). The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log I-up vs log I-IR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.
Resumo:
The Ho:YAP crystal is grown by the Czochralski technique. The room-temperature polarized absorption spectra of Ho:YAP crystal was measured on a c-cut sample with 1 at% holmium. According to the obtained Judd-Ofelt intensity parameters Omega(2) = 1.42 x 10(-20) cm(2), Omega(4) = 2.92 x 10(-20) cm(2), and Omega(6) = 1.71 x 10(-20) cm(2), this paper calculated the fluorescence lifetime to be 6 ms for I-5(7) -> I-5(8) transition, and the integrated emission cross section to be 2.24 x 10(-18) cm(2). It investigates the room-temperature Ho:YAP laser end-pumped by a 1.91-mu m Tm:YLF laser. The maximum output power was 4.1 W when the incident 1.91-mu m pump power was 14.4W. The slope efficiency is 40.8%, corresponding to an optical-to-optical conversion efficiency of 28.4%. The Ho:YAP output wavelength was centred at 2118 nm with full width at half maximum of about 0.8 nm.
Resumo:
Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 degrees C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 mu m light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 gm reached maximum at 800 degrees C and decreased dramatically at 1000 degrees C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED
Resumo:
The self-assembled growth of vertically well-aligned ZnO nanorod arrays with uniform length and diameter on Si substrate has been demonstrated via thermal evaporation and vapor-phase transport. The structural, photoluminescence (PL), and field emission properties of the as-prepared nanorod arrays were investigated. The PL spectrum at 10 K shows a strong and sharp near-band gap emission (NBE) peak ( full width at half-maximum (FWHM) = 4.7 meV) and a weak neglectable deep-level emission (DL) peak (I-NBE/I-DL= 220), which implies its good crystallinity and high optical quality. The room-temperature NBE peak was deduced to the composition of free exciton and its first-order replicas emissions by temperature-dependent PL spectra. The field emission measurements indicate that, with a vacuum gap of 400 Am, the turn-on field and threshold field is as low as 2.3 and 4.2 V/mu m. The field enhancement factor beta and vacuum gap d follows a universal equation.
Resumo:
Diamond films were prepared by microwave plasma chemical vapor deposition (MWPCVD). In order to obtain better field emission properties, the samples coated with different metals were prepared. The results showed that the field emission properties of diamond coated with metals could be greatly improved in comparison to pure diamond film and the different kinds of coated metals have different influences on the field emission properties. The possible reasons of effects on the field emission properties are discussed, which were probably due to the reduced effective surface work function by metal coatings; but the detail of the mechanism should be studied further. The surface morphology and microstructure of the sample were characterized by Atomic Force Microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray Diffraction (XRD) and Raman spectrum tests. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
To improve the accuracy of measured gain spectra, which is usually limited by the resolution of the optical spectrum analyzer (OSA), a deconvolution process based on the measured spectrum of a narrow linewidth semiconductor laser is applied in the Fourier transform method. The numerical simulation shows that practical gain spectra can be resumed by the Fourier transform method with the deconvolution process. Taking the OSA resolution to be 0.06, 0.1, and 0.2 nm, the gain-reflectivity product spectra with the difference of about 2% are obtained for a 1550-nm semiconductor laser with the cavity length of 720 pm. The spectra obtained by the Fourier transform method without the deconvolution process and the Hakki-Paoli method are presented and compared. The simulation also shows that the Fourier transform method has less sensitivity to noise than the Hakki-Paoli method.
Resumo:
(1 1 (2) over bar 0) GaN/InGaN multiple quantum wells (MQWs) were grown on (1 (2) over bar 0 2) sapphire by metal-organic vapor phase epitaxy. The excitation-intensity-dependent photoluminescence (PL) spectrum of these samples was measured, and no peak shift was observed. This phenomenon was attributed to the absence of piezoelectric field (PEF) along the growth orientation of the (1 1 (2) over bar 0) face MQWs. Our experimental results showed that PEF was the main reason causing peak blueshift in excitation-intensity-dependent PL spectrum of (0 0 0 1) InGaN/GaN NIQWs. It was expected that fabricating (1 1 (2) over bar 0) face nitride device should be a method to avoid PEF and get low-threshold, high-quantum-efficiency and stable-emission-wavelength light-emission devices. (C) 2002 Elsevier Science B.V. All rights reserved.