973 resultados para electron capture detection
Resumo:
Since October 2001, the Adolfo Lutz Institute has been receiving vesicular fluids and scab specimens of patients from Paraíba Valley region in the São Paulo and Minas Gerais States and from São Patricio Valley, in the Goiás State. Epidemiological data suggested that the outbreaks were caused by Cowpox virus or Vaccinia virus. Most of the patients are dairy milkers that had vesiculo-pustular lesions on the hands, arms, forearms, and some of them, on the face. Virus particles with orthopoxvirus morphology were detected by direct electron microscopy (DEM) in samples of 49 (66.21%) patients of a total of 74 analyzed. Viruses were isolated in Vero cell culture and on chorioallantoic membrane (CAM) of embryonated chicken eggs. Among 21 samples submitted to PCR using primers for hemagglutinin (HA) gene, 19 were positive. Restriction digestion with TaqI resulted in four characteristic Vaccinia virus fragments. HA nucleotide sequences showed 99.9% similarity with Cantagalo virus, described as a strain of Vaccinia virus. The only difference observed was the substitution of one nucleotide in the position 616 leading to change in one amino acid of the protein in the position 206. The phylogenetic analysis showed that the isolates clustered together with Cantagalo virus, other Vaccinia strains and Rabbitpox virus.
Resumo:
In the present work, the development of a genosensor for the event-specific detection of MON810 transgenic maize is proposed. Taking advantage of nanostructuration, a cost-effective three dimensional electrode was fabricated and a ternary monolayer containing a dithiol, a monothiol and the thiolated capture probe was optimized to minimize the unspecific signals. A sandwich format assay was selected as a way of precluding inefficient hybridization associated with stable secondary target structures. A comparison between the analytical performance of the Au nanostructured electrodes and commercially available screen-printed electrodes highlighted the superior performance of the nanostructured ones. Finally, the genosensor was effectively applied to detect the transgenic sequence in real samples, showing its potential for future quantitative analysis.
Resumo:
In this work, a norfloxacin selective modified glassy carbon electrode (GCE) based on a molecularly imprinted polymer (MIP) as electrochemical sensor was developed. A suspension of multi-walled carbon nanotubes (MWCNTs) was deposited on the electrode surface. Subsequently, a molecularly imprinted film was prepared by electropolymerization, via cyclic voltammetry of pyrrole (PPy) in the presence of norfloxacin (NFX) as the template molecule. A control electrode (NIP) was also prepared. Scanning electron microscopy (SEM) and cyclic voltammetry in a ferrocyanide solution were performed for morphological and electrochemical characterisation, respectively. Several experimental parameters were studied and optimised. For quantification purposes the MIP/MWCNT/GCE was immersed in NFX solutions for 10 min, and the detection was performed in voltammetric cell by square wave voltammetry. The proposed sensor presented a linear behaviour, between peak current intensity and logarithmic concentration of NFX between 1 × 10−7 and 8 × 10−6 M. The obtained results presented good precision, with a repeatability of 4.3% and reproducibility of 9% and the detection limit was 4.6 × 10−8 M (S/N = 3). The developed sensor displayed good selectivity and operational lifetime, is simple to fabricate and easy to operate and was successfully applied to the analysis of NFX in urine samples.
Resumo:
Circulating tumor cells (CTCs) may induce metastases when detached from the primary tumor. The numbers of these cells in blood offers a valuable prognostic indication. Magnetoresistive sensing is an attractive option for CTC counting. In this technique, cells are labeled with nancomposite polymer beads that provide the magnetic signal. Bead properties such as size and magnetic content must be optimized in order to be used as a detection tool in a magnetoresistive platform. Another important component of the platform is the magnet required for proper sensing. Both components are addressed in this work. Nanocomposite polymer beads were produced by nano-emulsion and membrane emulsification. Formulations of the oil phase comprising a mixture of aromatic monomers and iron oxide were employed. The effect of emulsifier (surfactant) concentration on bead size was studied. Formulations of polydimethilsiloxane (PDMS) with different viscosities were also prepared with nano-emulsion method resulting in colloidal beads. Polycaprolactone (PCL) beads were also synthetized by the membrane emulsification method. The beads were characterized by different techiques such as dynamic light scattering (DLS), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Additionally, the magnet dimensions of the platform designed to detect CTCs were optimized through a COMSOL multiphysics simulation.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.electacta.2015.09.169.
Resumo:
Detection of rotavirus RNA by polyacrylamide gel electrophoresis (PAGE) proved to be a highly sensitive and rapid diagnostic test. A comparison of this assay with immuno-electron microscopy (IEM) and enzyme immunoassay (EIA) in 245 faeces from children with gastroenteritis revealed complete agreement between the three assays in 238 (97.14%) samples. Among 75 samples positive in at least one of the three assays, negative results were observed in 5 (6.48%) by PAGE, in 6 (6.76%) by EIA and in none by IEM. Silver staining greatly increased the sensitivity of the PAGE assay. We conclude that although IEM remains the most sensitive and rapid rotavirus diagnostic assay, the PAGE technique has many advantages in its favour, including the non-requirement of expensive equipment, the use of only chemically defined reagents and the capacity to distinguish virus subgroup and variants and to detect non-crossreactive rotaviruses which are missed in serological assays.
Resumo:
Conjugates of goat anti-HBs IgG and horseradish peroxidase (HRP) prepared by two different methods, one using NaIO4 and the other SPDP, were compared. Anti-HBs antibodies obtained from goat, rabbit and guinea-pig were tested as capture serum. The ELISA showed a sensitivity similar to RIA and a level of antigen captation ranging from 4.37 to 8.75 nanograms/ml was obtained when rabbit or guinea-pig captures were used combined with both NaIO4 or SPDP conjugates.
Resumo:
This paper presents the evaluation of an enzyme immunoassay in which Mayaro virus-infected cultured cells ara used as antigen (EIA-ICC) and an IgM antibody capture ELISA (MAC-ELISA) for Mayaro serologic diagnosis using 114 human sera obtained during a Mayaro outbreak occurred in Bolivia, in 1987. Results were compared with those obtained by haemagglutination-inhibition test (HAI). MAC-ELISA was the most sensitive technique for anti-Mayaro IgM detection. MAC-ELISA was twice sensitive as IgM EIA-ICC. The data shows that MAC-ELISA is a practical and valid technique for diagnosis of recent mayaro infection. IgG-ICC showed hight sensitivity and high specificity compared to HAI. The combination of anti-Mayaro IgG and IgM EIA-ICC results presented the highest sensitivity of the study. Anti-Mayaro IgG and IgM simultaneous detection by ELISA-ICC can be used for recent infection diagnosis (in spite of a less sensitive IgM detection than by MAC-ELISA), for surveillance and sero-epidemiologic studies, and for studies of IgG and IgM responses to Mayaro infection.
Resumo:
Detection of papillomavirus DNA in sity hybridization technique was perfomed in 29 symptomatic patients (6 males and 23 females) during the period of 1989-1991 at the Clinic for Sexually Transmitted Diseases, Universidade Federal Fluminense, State of rio de Janeiro. All the male patients had condyloma acuminata. Only HPV 6/11 were found in these lesions. Clinical features inthe female patients included vulvar condyloma acuminata, bowenoid populosis, flat cervical condyloma, cervical condyloma acuminatum and cervical intraepithelialneoplasia grade II (CIN II). We also found cases of condyloma acuminata associated to vulvar intraepithelial neoplasia grade III (VIN III), as well as to vaginal invasive carcinoma. HPV 6/11 and 16/18 were found in vulvar condyloma acuminata. Mixed infection by 6/11-16/18 HPV were also seen in these lesions as well as in the patient who had cervical condyloma acuminatum. HPV 16/18 were found in the condyloma acuminatum plus VIN III and in the CIN II lesions. We have found HPV31/33/51 in the specimen of condyloma acuminatum plus invasive carcinoma. In order to investigate the ultrastructural aspects of HPV infection in genital tissue, the biopsies of three female patients were observed under electron microscope.Mature virus particles were found in the cells of a condyloma acuminatum as wellas in the condyloma acuminatum plus invasive carcinoma case. In another sample, chromosome breakages were found in the nuclei of the infected cells although no viral particles were observed.
Resumo:
The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.
Resumo:
This preliminary report describes human and cow cases of poxvirus that recently ocurred in the State of Rio de Janeiro. The electron microscopic findings were consistent with parapoxviral and orthopoxviral infection. Orthopoxvirus strains were isolated from human and cow cases. Detailed viral characterization by means of genetical techniques is under investigation. Based on these informations, poxviral diseases should be also considered an emerging viral zoonosis that can affect human beings.
Resumo:
The present study developed and standardized an enzime-linked immunosorbent assay (ELISA) to detect Giardia antigen in feces using rabbit polyclonal antibodies. Giardia cysts were purified from human fecal samples by sucrose and percoll gradients. Gerbils (Meriones unguiculatus) were infected to obtain trophozoites. Rabbits were inoculated with either cyst or trophozoite antigens of 14 Colombian Giardia isolates to develop antibodies against the respective stages. The IgG anti-Giardia were purified by sequential caprylic acid and ammonium sulfate precipitation. A portion of these polyclonal antibodies was linked to alkaline phosphatase (conjugate). One hundred and ninety six samples of human feces, from different patients, were tested by parasitologic diagnosis: 69 were positive for Giardia cysts, 56 had no Giardia parasites, and 71 revealed parasites other than Giardia. The optimal concentration of polyclonal antibodies for antigen capture was 40 µg/ml and the optimal conjugate dilution was 1:100. The absorbance cut-off value was 0.24. The parameters of the ELISA test for Giardia antigen detection were: sensitivity, 100% (95% CI: 93.4-100%); specificity, 95% (95% CI: 88.6-97.6%); positive predictive value, 91% (95% CI: 81.4-95.9%); and negative predictive value, 100% (95% CI: 96.1-100%). This ELISA will improve the diagnosis of Giardia infections in Colombia and will be useful in following patients after treatment.
Resumo:
Strains of enterotoxigenic Escherichia coli (ETEC) are responsible for significant rates of morbidity and mortality among children, particularly in developing countries. The majority of clinical and public health laboratories are capable of isolating and identifying Salmonella, Shigella, Campylobacter, and Escherichia coli O157:H7 from stool samples, but ETEC cannot be identified by routine methods. The method most often used to identify ETEC is polymerase chain reaction for heat-stable and heat-labile enterotoxin genes, and subsequent serotyping, but most clinical and public health laboratories do not have the capacity or resources to perform these tests. In this study, polyclonal rabbit and monoclonal mouse IgG2b antibodies against ETEC heat-labile toxin-I (LT) were characterized and the potential applicability of a capture assay was analyzed. IgG-enriched fractions from rabbit polyclonal and the IgG2b monoclonal antibodies recognized LT in a conformational shape and they were excellent tools for detection of LT-producing strains. These findings indicate that the capture immunoassay could be used as a diagnostic assay of ETEC LT-producing strains in routine diagnosis and in epidemiological studies of diarrhea in developing countries as enzyme linked immunosorbent assay techniques remain as effective and economical choice for the detection of specific pathogen antigens in cultures.
Resumo:
A study was carried out to evaluate the presence of serological markers for the immunodiagnosis of the vertical transmission of toxoplasmosis. We tested the sensitivity, specificity and predictive values (positive and negative) of different serological methods for the early diagnosis of congenital toxoplasmosis. In a prospective longitudinal study, 50 infants with suspected congenital toxoplasmosis were followed up in the ambulatory care centre of Congenital Infections at University Hospital in Goiânia, Goiás, Brazil, from 1 January 2004-30 September 2005. Microparticle Enzyme Immunoassay (MEIA), Enzyme-Linked Fluorescent Assay (ELFA) and Immune-Fluorescent Antibody Technique (IFAT) were used to detect specific IgM anti-Toxoplasma gondii antibodies and a capture ELISA was used to detect specific IgA antibodies. The results showed that 28/50 infants were infected. During the neonatal period, IgM was detected in 39.3% (11/28) of those infected infants and IgA was detected in 21.4% (6/28). The sensitivity, specificity and predictive values (positive and negative) of each assay were, respectively: MEIA and ELFA: 60.9%, 100%, 100%, 55.0%; IFAT: 59.6%, 91.7%, 93.3%, 53.7%; IgA capture ELISA: 57.1%, 100%, 100%, 51.2%. The presence of specific IgM and IgA antibodies during the neonatal period was not frequent, although it was correlated with the most severe cases of congenital transmission. The results indicate that the absence of congenital disease markers (IgM and IgA) in newborns, even after confirming the absence with several techniques, does not constitute an exclusion criterion for toxoplasmosis.