990 resultados para electromagnetically induced absorption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-induced breakdown plasma is produced by using Q-switched Nd: YAG laser operating at 532 nm, which interacts with the Al alloy sample target in air. The spectral lines in the 230-440 nm wavelength range have been identified, and based on the calibration-free method, the mass concentration of Al alloy are obtained, which is in good agreement with the standard value of the sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica glass samples were implanted with 1.157 GeV Fe-56 and 1.755 GeV Xe-136 ions to fluences range from 1 x 10(11) to 3.8 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E' center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E' center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E' center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (alpha band), 3.2 eV (beta band) and 2.67 eV (gamma band) when excited at 5 eV. The intensities of alpha and gamma bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of beta band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of alpha and gamma bands and electronic energy loss processes determine the bleaching of beta band in heavy ion irradiated silica glass. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiolysis of cysteine under plasma discharge and irradiation of low-energy Ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR In addition, the generation of hydrogen sulfide was also identified The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH3, -COO-) of cysteine. and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation (C) 2010 Elsevier B V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion - molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser- ablation supersonic expansion nozzle source. Photo- induced reactions in the 1: 1 complexes have been studied in the spectral range of 230 - 410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 3(2)P <-- 3(2)S atomic transition. The ground state geometry of Mg+ - OCNC2H5 was fully optimized at B3LYP/6- 31 - G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3P(x,y,z) excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo- induced reactions of Mg+ (OCNC2H5). (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using microporous zeolites as host, sub-nanometric ZnO clusters were prepared in the micropores of the host by the incipient wetness impregnation method. A small amount of sub-nanometric ZnO clusters were introduced into the channels of HZSM-5 zeolite, whereas a large quantity of sub-nanometric ZnO clusters can be accommodated in the supercages of HY zeolite and no macrocrystalline ZnO exists on the extra surface of the HY material. The vibrations of the zeolite framework and ZnO were characterized by UV Raman spectroscopy. The optical properties of these ZnO clusters were studied by UV-visible absorption spectroscopy and laser-induced luminescence spectroscopy. It is found that there are strong host-guest interactions between the framework oxygen atoms of zeolite and ZnO clusters influencing the motions of the framework oxygen atoms. The interaction may be the reason why ZnO clusters are stabilized in the pores of zeolites. Different from bulk ZnO materials, these sub-nanometric ZnO clusters exhibit their absorption onset below 265 nm and show a purple luminescence band (centered at 410-445 nm) that possesses high quantum efficiency and quantum size effect. This purple luminescence band most likely originates from the coordinatively unsaturated Zn sites in sub-nanometric ZnO clusters. On the other hand, the differences in the pore structure between HZSM-5 and HY zeolites cause the absorption edge and the purple luminescence band of ZnO clusters in ZnO/HZSM-5 show a red shift in comparison with those of ZnO clusters in ZnO/HY.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report a simple approach for controllable synthesis of one-dimensional (ID) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form I D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoscale-phase separation of electron donor/acceptor blends is crucial for efficient charge generation and collection in Polymer bulk heterojunction photovoltaic cells. We investigated solvent vapor annealing effect of poly(3-hexylthiophene) (P3HT)/methanofullerene (PCBM) blend oil its morphology and optoelectronic properties. The organic solvents of choice for the treatment have a major effect oil the morphology of P3HT/PCBM blend and the device performance. Ultraviolet-visible absorption spectro,;copy shows that specific solvent vapor annealing can induce P3HT self-assembling to form well-ordered structure; and hence, file absorption in the red region and the hole transport are enhanced. The solvent that has a poor Solubility to PCBM Would cause large PCBM Clusters and result in a rough blend film. By combining an appropriate solvent vapor treatment and post-thermal annealing of the devices, the power conversion efficiency is enhanced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we studied the reaction between Au nanoparticles (Au NPs) and [Fe(CN)(6)](3-) by the UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The absorption peak of Au NPs disappeared after adding [Fe(CN)(6)](3-) and the XPS data conformed the formation of [Au(CN)(2)](-). The results demonstrated that [Fe(CN)(6)](3-) could induce the dissolution of Au NPs, where the CN- from the dissociation of [Fe(CN)(6)](3-) played an important role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors report enhanced poly(3-hexylthiophene) (P3HT):methanofullerene (PCBM) bulk-heterojunction photovoltaic cells via 1,2-dichlorobenzene (DCB) vapor treatment and thermal annealing. DCB vapor treatment can induce P3HT self-organizing into ordered structure leading to enhanced absorption and high hole mobility. Further annealing the device at a high temperature, PCBM molecules begin to diffuse into aggregates and together with the ordered P3HT phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Compared to the control device that is merely annealed, optical absorption, short-circuit current, and power conversion efficiency are increased for the DCB vapor-treated cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors report the formation of highly oriented wrinkling on the surface of the bilayer [polystyrene (PS)/poly(vinyl pyrrolidone) (PVP)] confined by a polydimethylsiloxane (PDMS) mold in a water vapor environment. When PVP is subjected to water vapor, the polymer loses its mechanical rigidity and changes to a viscous state, which leads to a dramatic change in Young's modulus. This change generates the amount of strain in the bilayer to induce the wrinkling. With a shape-controlled mold, they can get the ordered wrinkles perfectly perpendicular or leaned 45 S to the channel orientation of the mold because the orientation of the resultant force changes with the process of water diffusion which drives the surface to form the wrinkling. Additionally, they can get much smaller wrinkles than the stripe spacing of PDMS mold about one order. The wrinkle period changes with the power index of about 0.5 for various values of the multiplication product of the film thicknesses of the two layers, namely, lambda similar to (h(PS)h(PVP))(1/2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

pH-dependent processes of bovine heart ferricytochrome c have been investigated by electronic absorption and circular dichroism (CD) spectra at functionalized single-wall carbon 'nanotubes (SWNTs) modified glass carbon electrode (SWNTs/ GCE) using a long optical path thin layer cell. These methods enabled the pH-dependent conformational changes arising from the heme structure change to be monitored. The spectra obtained at functionalized SWNTs/GCE reflect electrode surface microstructure-dependent changes for pH-induced protein conformation, pK(a) of alkaline transition and structural microenvironment of the ferricytochrome c heme. pH-dependent conformational distribution curves of ferricytochrome c obtained by analysis of in situ CD spectra using singular value decomposition least square (SVDLS) method show that the functionalized SWNTs can retain native conformational stability of ferricytochrome c during alkaline transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano/microstructure of bis(propyl)triethoxysilane substituted perylenediimide (1) with nanoparticle and twisted microrod morphologies were obtained by reprecipitation method induced by water and petroleum ether, respectively. It is believed that the different nucleation and growth processes involved are responsible for the formation of the nano/micro-structure With different morphologies of 1. UV-vis absorption and photoluminescence measurements show that their UV-vis absorption and photoluminescence properties are different from each other as well as their monomer mid bulk materials due to the different effects on the change transfer (CT) transition energy levels caused by their different aggregation behaviors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation behavior of polyimide (PMDA-ODA) induced by nitrogen laser irradiation was studied. The changes in the surface morphology and the composition of the irradiated polyimide films were examined by scanning electron microscopy, X-ray photoelectron spectroscopy and FT-IR spectroscopy. The initial reaction was achieved by photochemical degradation of polyimide in the highly electronic excited state by the absorption of a second 337 nm photon. Atmospheric oxygen sequentially reacted with the produced radicals to form a highly oxidized layer. The formation of carbonyl group was enhanced by the heat remaining on the irradiated polyimide film surfaces. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.