946 resultados para electromagnetic tracker
Resumo:
To become competitive, ultimately, photovoltaics should have its costs reduced and use photovoltaic systems of greater efficiency. The main steps in this direction are the use of new materials, the improvement in the manufacture of modules and the adoption of techniques of maximum power point tracking and of solar tracking. This article aims at presenting the project and development of an azimuth and elevation solar tracker, based on a new conception of the positioning sensor, composed of an array of four photoresistors. The two direct current motors that operate in the vertical and horizontal axes are controlled by a proportional-integral microcontroller. The conditions of the project were low cost, small energy consumption and versatility. The microcontroller can also incorporate a maximum power point tracking algorithm. The performance of solar tracker prototype in the initial phase of field tests can be considered appropriate. © Institution of Engineers Australia, 2013.
Resumo:
Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe 3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g- 1 and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. © 2013 Elsevier B.V.
Resumo:
Several studies of the physiological responses of different organisms exposed to extremely low-frequency electromagnetic fields (ELF-EMF) have been described. In this work, we report the minimal effects of in situ exposure to ELF-EMF on the global protein expression of Chromobacterium violaceum using a gel-based proteomic approach. The protein expression profile was only slightly altered, with five differentially expressed proteins detected in the exposed cultures; two of these proteins (DNA-binding stress protein, Dps, and alcohol dehydrogenase) were identified by MS/MS. The enhanced expression of Dps possibly helped to prevent physical damage to DNA. Although small, the changes in protein expression observed here were probably beneficial in helping the bacteria to adapt to the stress generated by the electromagnetic field.
Resumo:
The second-order differential equations that describe the polyphase transmission line are difficult to solve due to the mutual coupling among them and the fact that the parameters are distributed along their length. A method for the analysis of polyphase systems is the technique that decouples their phases. Thus, a system that has n phases coupled can be represented by n decoupled single-phase systems which are mathematically identical to the original system. Once obtained the n-phase circuit, it's possible to calculate the voltages and currents at any point on the line using computational methods. The Universal Line Model (ULM) transforms the differential equations in the time domain to algebraic equations in the frequency domain, solve them and obtain the solution in the frequency domain using the inverse Laplace transform. This work will analyze the method of modal decomposition in a three-phase transmission line for the evaluation of voltages and currents of the line during the energizing process.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For t (t) over bar events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of vertical bar eta vertical bar < 0.9 and 85% for 0.9 < vertical bar eta vertical bar < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at vertical bar eta vertical bar < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10 m m and 30 mu m in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 mu m in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two models with SU(3)C ⊗ SU(3)L U(1)N gauge symmetry are considered. We show that the masslessness of the photon does not prevent the neutrinos from acquiring Majorana masses. That is, there is no relation between the VEVs of Higgs fields and the electromagnetic gauge invariance contrary to what has been claimed recently. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A self-learning simulated annealing algorithm is developed by combining the characteristics of simulated annealing and domain elimination methods. The algorithm is validated by using a standard mathematical function and by optimizing the end region of a practical power transformer. The numerical results show that the CPU time required by the proposed method is about one third of that using conventional simulated annealing algorithm.
Resumo:
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.
Resumo:
An exact expression is derived for the time-averaged electromagnetic energy within a magneto-dielectric coated sphere, which is irradiated by a plane and time-harmonic electromagnetic wave. Both the spherical shell and core are considered to be dispersive and lossy, with a realistic dispersion relation of an isotropic split-ring resonator metamaterial. We obtain analytical expressions for the stored electromagnetic energies inside the core and the shell separately and calculate their contributions to the total average energy density. The stored electromagnetic energy is calculated for two situations involving a metamaterial coated sphere: a dielectric shell and dispersive metamaterial core, and vice versa. An explicit relation between the stored energy and the optical absorption efficiency is also obtained. We show that the stored electromagnetic energy is an observable sensitive to field interferences responsible for the Fano effect. This result, together with the fact that the Fano effect is more likely to occur in metamaterials with negative refraction, suggest that our findings may be explored in applications.
Resumo:
Background: Accelerating bone healing around dental implants can reduce the long-term period between the insertion of implants and functional rehabilitation. Objective: This in vivo study evaluated the effect of a constant electromagnetic field (CEF) on bone healing around dental implants in dogs. Materials and methods: Eight dental implants were placed immediately after extraction of the first premolar and molar teeth on the mandible of two male dogs and divided into experimental (CEF) and control groups. A CEF at magnetic intensity of 0.8 mT with a pulse width of 25 mu s and frequency of 1.5 MHz was applied on the implants for 20 min per day for 2 weeks. Result and conclusion: After qualitative histological analysis, a small quantity of newly formed bone was observed in the gap between the implant surface and alveolar bone in both groups.
Resumo:
The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]