948 resultados para electrochemical impedance spectroscopy (EIS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallographic studies carried out for Tytin-Plus and Dispersalloy amalgams show a porous multiphase material, whose surface phases are: gamma-(Ag3Sn), gamma(1)-(Ag2Hg3), eta'-(Cu6Sn5) and epsilon-(Cu3Sn). Additionally, Dispersalloy is present in the Ag-Cu eutectic. The application of surface analysis by SEM reveal a heterogeneous distribution of the above mentioned phases. Microstructures consisting of colonies or clusters were not observed. The corrosion testing of these materials was done in 0.9% NaCl aerated solution at 25 degrees C using potentiodynamic polarization curves and ac impedance measurements. The corrosion process in these multiphase systems can be interpreted as the sum of more than one electrodissolution process and the posterior formation of corrosion films. on each electrode, the corrosion film is formed by different mechanisms. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysiloxane hybrid films were deposited on stainless steel by dip-coating using a sol prepared by hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyltrimethoxysilane (MPTS), followed by radical polymerization of methacrylic moieties. The TEOS/MPTS ratio was chosen equal to 2 and the Ce/Si ratio varied between 0.01 and 0.1. The effects of cerium concentration and valence (Ce(III) and Ce (IV)) on the structural features of polysiloxane films were studied by X-ray photoelectron spectroscopy (XPS) and (29)Si nuclear magnetic resonance (NMR). The corrosion protection of stainless steel by the hybrid coatings was investigated by XPS, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves, after immersion in saline and acid solutions. The NMR results have shown for Ce(IV) doped films a high degree of polycondensation of up to 89%. Electrochemical analysis has evidenced that hybrid films with the lowest Ce concentration act as an efficient diffusion barrier by increasing the corrosion resistance and reducing the current densities up to 3 orders of magnitude compared to bare stainless steel. The analysis of structural effects induced by Ce(III) and Ce(IV) species, performed by XPS, indicates that the improved corrosion protection of Ce(IV) doped films might be mainly related to the enhanced polymerization of siloxane groups. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoporous iron (hydr) oxide electrodes are evaluated as phosphate sensors using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The intensity of the reduction peak current (I-cp) of the ferrihydrite working electrode is tied to phosphate concentration at low pH; however, a hematite electrode combined with the use of EIS provided reliable sensing data at multiple pH values. Nanoporous hematite working electrodes produced an impedance phase component (theta) that shifts with increasing phosphate, and, at chosen frequencies, theta values were fitted for the range 1 nM to 0.1 mM phosphate at pH 4 and pH 7 in 5 mM NaClO4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is presented a study conducted on the physical and electrochemical properties of fluorinated a-C:H films deposited onto a commercial aluminum alloy (AA 5052). The coatings were deposited from mixtures of 91% of acetylene and 9% of argon by plasma immersion ion implantation and deposition technique, PIIID. Total gas pressure was 44 Pa and deposition time (t(dep)) was varied from 300 to 1200 s. The depositing plasmas were generated by the application of radiofrequency power (13.56 MHz, 100W) to the upper electrode and high voltage negative pulses (2400 V. 300 Hz) to the sample holder. Fluorine was incorporated in a post-deposition plasma treatment (13.56 MHz, 70W, 13 Pa) generated from sulfur hexafluoride atmosphere. Chemical structure and composition of the films were investigated using infrared reflectance/absorbance spectroscopy and X-ray photoelectron spectroscopy. The corrosion resistance of the layers was determined by electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution, at room temperature. Films presented good adhesion to the substrates and are classified as hydrogenated amorphous carbon (a-C:H) with oxygen traces. Fluorine was detected in all the samples after the post-deposition treatment being its proportion independent on the deposition time. Film thickness presented different tendencies with t(dep), revealing the variation of the deposition rate as a function of the deposition time. Such fluorinated a-C:H films improved the corrosion resistance of the aluminum surface. In a general way the corrosion resistance was higher for films prepared with lower deposition times. The variation of sample temperature with t(dep) was found to be decisive for the concentration of defects in the films and, consequently, for the performance of the samples in electrochemical tests. Results are interpreted in terms of the energy delivered to the growing layer by ionic bombardment. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This job aim has been to study the aqueous corrosion of the 7xxx heattreatable aluminium alloys, used in the aeronautical industry. The 7010, 7050 and 7475 alloys, have been supplied in the T7 condition and submitted to the annealed and aging thermal treatments of in order to study their behaviours front to corrosion in 5% NaCl pH 6,0, air-saturated and deaerated solutions. The electrochemical study has been accomplished through potential measures in open circuit, potentiodynamic polarisation curves and electrochemical impedance spectroscopy (EIS). The aged alloy resulted to be the most resistant to corrosion and annealed the less resistant ones. In spite of it they have different chemical compositions, in each mean, the alloy with the same thermal treatment has behaved in a similar way. In aerated solution, the process is controlled by oxygen diffusion and in oxygen absence for dissolution through a film. Hardness and mass loss measures, after corrosion test, have supported this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bornite electrodes were characterized in the absence or in the presence of Acidithiobacillus ferrooxidans, which is an important microorganism involved in metal bioleaching processes. The presence of the bacterium modified the mineral/electrolyte interface, increasing the corrosion rate, as revealed by interferometric, AEM, ICP and EIS analyses. As a consequence of bacterial activity the electrode became porous, increasing its surface heterogeneity. This behavior was correlated with the evolution of impedance diagrams obtained during the time course of experiments. The main difference in these diagrams was the presence of an inductive feature (up to 44 h), which was related to bacterial action on the mineral dissolution, better than to its adhesion on the bornite. The total real impedance measured in presence of the bacterium was about 10 times lower than in its absence, due to the acceleration of the mineral dissolution, because an oxidant environment was maintained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)