794 resultados para electrochemical doping
Resumo:
PURPOSE: All kinds of blood manipulations aim to increase the total hemoglobin mass (tHb-mass). To establish tHb-mass as an effective screening parameter for detecting blood doping, the knowledge of its normal variation over time is necessary. The aim of the present study, therefore, was to determine the intraindividual variance of tHb-mass in elite athletes during a training year emphasizing off, training, and race seasons at sea level. METHODS: tHb-mass and hemoglobin concentration ([Hb]) were determined in 24 endurance athletes five times during a year and were compared with a control group (n = 6). An analysis of covariance was used to test the effects of training phases, age, gender, competition level, body mass, and training volume. Three error models, based on 1) a total percentage error of measurement, 2) the combination of a typical percentage error (TE) of analytical origin with an absolute SD of biological origin, and 3) between-subject and within-subject variance components as obtained by an analysis of variance, were tested. RESULTS: In addition to the expected influence of performance status, the main results were that the effects of training volume (P = 0.20) and training phases (P = 0.81) on tHb-mass were not significant. We found that within-subject variations mainly have an analytical origin (TE approximately 1.4%) and a very small SD (7.5 g) of biological origin. CONCLUSION: tHb-mass shows very low individual oscillations during a training year (<6%), and these oscillations are below the expected changes in tHb-mass due to Herythropoetin (EPO) application or blood infusion (approximately 10%). The high stability of tHb-mass over a period of 1 year suggests that it should be included in an athlete's biological passport and analyzed by recently developed probabilistic inference techniques that define subject-based reference ranges.
Resumo:
We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.
Resumo:
Hemoglobin concentration is one of the principal factors of aerobic power and, consequently, of performance in many types of physical activities. The use of recombinant human erythropoietin is, therefore, particularly powerful for improving the physical performances of patients, and, more generally, improving their quality of life. This article discusses procedures for monitoring recombinant erythropoietin and its analogues in doping for athletic performance.
Resumo:
Stimulation of erythropoiesis is one of the most efficient ways of doping. This type of doping is advantageous for aerobic physical exercise and of particular interest to endurance athletes. Erythropoiesis, which takes place in bone marrow, is under the control of EPO, a hormone secreted primarily by the kidneys when the arterial oxygen tension decreases. In certain pathological disorders, such as chronic renal failure, the production of EPO is insufficient and results in anemia. The pharmaceutical industry has, thus, been very interested in developing drugs that stimulate erythropoiesis. With this aim, various strategies have been, and continue to be, envisaged, giving rise to an expanding range of drugs that are good candidates for doping. Anti-doping control has had to deal with this situation by developing appropriate methods for their detection. This article presents an overview of both the drugs and the corresponding methods of detection, and thus follows a roughly chronological order.
Resumo:
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.
Resumo:
Due to their performance enhancing properties, use of anabolic steroids (e.g. testosterone, nandrolone, etc.) is banned in elite sports. Therefore, doping control laboratories accredited by the World Anti-Doping Agency (WADA) screen among others for these prohibited substances in urine. It is particularly challenging to detect misuse with naturally occurring anabolic steroids such as testosterone (T), which is a popular ergogenic agent in sports and society. To screen for misuse with these compounds, drug testing laboratories monitor the urinary concentrations of endogenous steroid metabolites and their ratios, which constitute the steroid profile and compare them with reference ranges to detect unnaturally high values. However, the interpretation of the steroid profile is difficult due to large inter-individual variances, various confounding factors and different endogenous steroids marketed that influence the steroid profile in various ways. A support vector machine (SVM) algorithm was developed to statistically evaluate urinary steroid profiles composed of an extended range of steroid profile metabolites. This model makes the interpretation of the analytical data in the quest for deviating steroid profiles feasible and shows its versatility towards different kinds of misused endogenous steroids. The SVM model outperforms the current biomarkers with respect to detection sensitivity and accuracy, particularly when it is coupled to individual data as stored in the Athlete Biological Passport.
Resumo:
C.E.R.A. (Continuous Erythropoietin Receptor Activator) is a new third-generation erythropoiesis-stimulating agent that has recently been linked with abuse in endurance sports. The anti-doping community rapidly reacted by releasing a high-throughput screening ELISA allowing the detection of C.E.R.A. doping in athletes' blood. In order to return adverse analytical findings, anti-doping laboratories, however, need, as far as possible, to confirm the presence of the drug in athletes' samples through orthogonal methods. This article focuses on the comparison of 2 proposed confirmation assays based on gel electrophoresis that were coupled with a new sample immunopurification method. IEF, the classical method used to target erythropoietin (EPO) and its recombinant analogues in athletes' samples, and SARKOSYL-PAGE were applied to the plasma samples of subjects having received a single injection of C.E.R.A. It was demonstrated that SARKOSYL-PAGE was at least 6 times more sensitive than IEF, with comparable specificity. A longer detection window coupled with easier interpretation criteria led us to recommend the use of SARKOSYL-PAGE to confirm C.E.R.A. presence in athletes' blood.
Resumo:
Big sports events like the 2008 European Football Championship are a challenge for anti-doping activities, particularly when the sports event is hosted by two different countries and there are two laboratories accredited by the World Anti-Doping Agency. This challenges the logistics of sample collection as well as the chemical analyses, which must be carried out timeously. The following paper discusses the handling of whereabouts information for each athlete and the therapeutic use exemption system, experiences in sample collection and transportation of blood and urine samples, and the results of the chemical analysis in two different accredited laboratories. An overview of the analytical results of blood profiling and growth hormone testing in comparison with the distribution of the normal population is also presented.
Resumo:
Tribulus terrestris is a nutritional supplement highly debated regarding its physiological and actual effects on the organism. The main claimed effect is an increase of testosterone anabolic and androgenic action through the activation of endogenous testosterone production. Even if this biological pathway is not entirely proven, T. terrestris is regularly used by athletes. Recently, the analysis of two female urine samples by GC/C/IRMS (gas chromatography/combustion/isotope-ratio-mass-spectrometry) conclusively revealed the administration of exogenous testosterone or its precursors, even if the testosterone glucuronide/epitestosterone glucuronide (T/E) ratio and steroid marker concentrations were below the cut-off values defined by World Anti-Doping Agency (WADA). To argue against this adverse analytical finding, the athletes recognized having used T. terrestris in their diet. In order to test this hypothesis, two female volunteers ingested 500 mg of T. terrestris, three times a day and for two consecutive days. All spot urines were collected during 48 h after the first intake. The (13)C/(12)C ratio of ketosteroids was determined by GC/C/IRMS, the T/E ratio and DHEA concentrations were measured by GC/MS and LH concentrations by radioimmunoassay. None of these parameters revealed a significant variation or increased above the WADA cut-off limits. Hence, the short-term treatment with T. terrestris showed no impact on the endogenous testosterone metabolism of the two subjects.
Resumo:
The anti-diuretic neurohypophysial hormone Vasopressin (Vp) and its synthetic analogue Desmopressin (Dp, 1-desamino-vasopressin) have received considerable attention from doping control authorities due to their impact on physiological blood parameters. Accordingly, the illicit use of Desmopressin in elite sport is sanctioned by the World Anti-Doping Agency (WADA) and the drug is classified as masking agent. Vp and Dp are small (8-9 amino acids) peptides administered orally as well as intranasally. Within the present study a method to determine Dp and Vp in urinary doping control samples by means of liquid chromatography coupled to quadrupole high resolution time-of-flight mass spectrometry was developed. After addition of Lys-Vasopressin as internal standard and efficient sample clean up with a mixed mode solid phase extraction (weak cation exchange), the samples were directly injected into the LC-MS system. The method was validated considering the parameters specificity, linearity, recovery (80-100%), accuracy, robustness, limit of detection/quantification (20/50 pg mL(-1)), precision (inter/intra-day<10%), ion suppression and stability. The analysis of administration study urine samples collected after a single intranasal or oral application of Dp yielded in detection windows for the unchanged target analyte for up to 20 h at concentrations between 50 and 600 pg mL(-1). Endogenous Vp was detected in concentrations of approximately 20-200 pg mL(-1) in spontaneous urine samples obtained from healthy volunteers. The general requirements of the developed method provide the characteristics for an easy transfer to other anti-doping laboratories and support closing another potential gap for cheating athletes.
Resumo:
Testosterone abuse is conventionally assessed by the urinary testosterone/epitestosterone (T/E) ratio, levels above 4.0 being considered suspicious. A deletion polymorphism in the gene coding for UGT2B17 is strongly associated with reduced testosterone glucuronide (TG) levels in urine. Many of the individuals devoid of the gene would not reach a T/E ratio of 4.0 after testosterone intake. Future test programs will most likely shift from population based- to individual-based T/E cut-off ratios using Bayesian inference. A longitudinal analysis is dependent on an individual's true negative baseline T/E ratio. The aim was to investigate whether it is possible to increase the sensitivity and specificity of the T/E test by addition of UGT2B17 genotype information in a Bayesian framework. A single intramuscular dose of 500mg testosterone enanthate was given to 55 healthy male volunteers with either two, one or no allele (ins/ins, ins/del or del/del) of the UGT2B17 gene. Urinary excretion of TG and the T/E ratio was measured during 15 days. The Bayesian analysis was conducted to calculate the individual T/E cut-off ratio. When adding the genotype information, the program returned lower individual cut-off ratios in all del/del subjects increasing the sensitivity of the test considerably. It will be difficult, if not impossible, to discriminate between a true negative baseline T/E value and a false negative one without knowledge of the UGT2B17 genotype. UGT2B17 genotype information is crucial, both to decide which initial cut-off ratio to use for an individual, and for increasing the sensitivity of the Bayesian analysis.