988 resultados para ecosystem structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kelp forests represent some of the most productive and diverse habitats on Earth. Understanding drivers of ecological patterns at large spatial scales is critical for effective management and conservation of marine habitats. We surveyed kelp forests dominated by Laminaria hyperborea (Gunnerus) Foslie 1884 across 9° latitude and >1000 km of coastline and measured a number of physical parameters at multiple scales to link ecological structure and standing stock of carbon with environmental variables. Kelp density, biomass, morphology and age were generally greater in exposed sites within regions, highlighting the importance of wave exposure in structuring L. hyperborea populations. At the regional scale, wave-exposed kelp canopies in the cooler regions (the north and west of Scotland) were greater in biomass, height and age than in warmer regions (southwest Wales and England). The range and maximal values of estimated standing stock of carbon contained within kelp forests was greater than in historical studies, suggesting that this ecosystem property may have been previously undervalued. Kelp canopy density was positively correlated with large-scale wave fetch and fine-scale water motion, whereas kelp canopy biomass and the standing stock of carbon were positively correlated with large-scale wave fetch and light levels and negatively correlated with temperature. As light availability and summer temperature were important drivers of kelp forest biomass, effective management of human activities that may affect coastal water quality is necessary to maintain ecosystem functioning, while increased temperatures related to anthropogenic climate change may impact the structure of kelp forests and the ecosystem services they provide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kelp forests represent some of the most productive and diverse habitats on Earth. Understanding drivers of ecological patterns at large spatial scales is critical for effective management and conservation of marine habitats. We surveyed kelp forests dominated by Laminaria hyperborea (Gunnerus) Foslie 1884 across 9° latitude and >1000 km of coastline and measured a number of physical parameters at multiple scales to link ecological structure and standing stock of carbon with environmental variables. Kelp density, biomass, morphology and age were generally greater in exposed sites within regions, highlighting the importance of wave exposure in structuring L. hyperborea populations. At the regional scale, wave-exposed kelp canopies in the cooler regions (the north and west of Scotland) were greater in biomass, height and age than in warmer regions (southwest Wales and England). The range and maximal values of estimated standing stock of carbon contained within kelp forests was greater than in historical studies, suggesting that this ecosystem property may have been previously undervalued. Kelp canopy density was positively correlated with large-scale wave fetch and fine-scale water motion, whereas kelp canopy biomass and the standing stock of carbon were positively correlated with large-scale wave fetch and light levels and negatively correlated with temperature. As light availability and summer temperature were important drivers of kelp forest biomass, effective management of human activities that may affect coastal water quality is necessary to maintain ecosystem functioning, while increased temperatures related to anthropogenic climate change may impact the structure of kelp forests and the ecosystem services they provide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of D6.1 is to make the Ecosystem software platform with underlying Software Repository, Digital Library and Media Archive available to the degree, that the RAGE project can start collecting content in the form of software assets, and documents of various media types. This paper describes the current state of the Ecosystem as of month 12 of the project, and documents the structure of the Ecosystem, individual components, integration strategies, and overall approach. The deliverable itself is the deployment of the described components, which is now available to collect and curate content. Whilst this version is not yet feature complete, full realization is expected within the next few months. Following this development, WP6 will continue to add features driven by the business models to be defined by WP7 later on in the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O efeito das grandes barragens na comunidade piscícola vem sendo documentado por numerosos estudos, enquanto o número de trabalhos que incidem sobre o efeito dos obstáculos de pequena dimensão é bastante mais reduzido. A comunidade piscícola foi amostrada e as variáveis ambientais foram caracterizadas em 28 locais divididos por dois cursos de água da Península Ibérica, 14 dos quais localizados imediatamente a montante, jusante e entre cinco pequenos obstáculos na Ribeira de Muge e 14 na Ribeira de Erra, considerada a linha de água de referência. Através de análise estatística multivariada foi possível verificar que variáveis de habitat como a velocidade de corrente e a profundidade, e não as variáveis físico-químicas, foram as principais responsáveis pela discriminação dos vários grupos de locais nas duas ribeiras. A ribeira de referência exibiu um gradiente longitudinal de velocidade de corrente que, contudo, não era suficientemente forte para causar alterações significativas na composição e estrutura dos agrupamentos piscícolas. Através da sucessiva e drástica repetição deste gradiente junto a cada estrutura, a ribeira com obstáculos apresentou diferenças na fauna piscícola entre os três tipos de locais. Os troços lênticos a montante apresentavam uma densidade mais elevada de espécies limnofilicas, omnívoras e exóticas, como o góbio (Gobio lozanoi), que estão bem adaptadas a este tipo de habitat. Os locais de amostragem situados a jusante e entre os obstáculos caracterizavam-se pela dominância de taxa reófilos e invetivo-os (i.e. barbo, Luciobarbus bocagei). As métricas relacionadas com a riqueza específica não apresentaram diferenças entre os três tipos de locais, ao contrário da diversidade que foi mais elevada nos pontos situados entre os obstáculos, afastados da sua influência directa, onde a diversidade de habitats também é mais elevada. Contrariamente aos locais a montante, os troços a jusante e entre os obstáculos apresentaram similaridades, em muitas das características estudadas, com a ribeira de referência, sugerindo que este tipo de estruturas provoca uma alteração mais significativa na comunidade piscícola a montante. Este estudo sugere que os efeitos dos pequenos obstáculos no habitat e na ictiofauna são, em parte, semelhantes aos descritos para as grandes barragens, fornecendo considerações importantes para os esforços de conservação dos ecossistemas ribeirinhos. ABSTRACT; Many studies have assessed the effects of large dams on fishes but few have examined the effects of small obstacles. Fishes were sampled and environmental variables were characterized at 28 sites in two lberian streams, 14 located immediately downstream, upstream and between five small obstacles at River Muge and 14 at River Erra, considered as the reference stream. Multivariate analysis indicated that habitat variables like current velocity and depth, but not physicochemistry, were the main responsible for site groups' discrimination in both streams. The reference stream exhibited a longitudinal gradient of current velocity that, however, wasn't strong enough to cause significant changes in the fish assemblage's composition and structure. By successive and drastically repeating this gradient near each structure, the obstac1es stream presented differences in fish fauna between the three site types. Lentic upstream sites presented higher density of limnophilic, omnivorous and exotic species, like gudgeon Gobio lozanoi, who are well adapted to this type of habitat. Downstream and between obstacles sites were characterized by the dominance of rheophilic and invertivorous taxa, especially barbel Luciobarbus bocagei. Richness metrics did not differ among site types, but diversity was higher in sites located between the obstacles away from its direct influence, where the habitat diversity was higher. Contrarily to upstream sites, downstream and between obstacles sites were similar in many of the studied features to the reference stream, implying that this type of structures cause a higher modification in the upstream fish community. This study suggests that the effects of small obstacles on habitat and fishes are similar, in some extent, to those reported for larger dams, providing important considerations for riverine ecosystem conservation efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For decades, global climate change has directly and indirectly affected the structure and function of ecosystems. Abrupt changes in biodiversity have been observed in response to linear or sudden modifications to the environment. These abrupt shifts can cause long-term reorganizations within ecosystems, with communities exhibiting new functional responses to environmental factors. Over the last 3 decades, the Gironde estuary in southwest France has experienced 2 abrupt shifts in both the physical and chemical environments and the pelagic community. Rather than describing these shifts and their origins, we focused on the 3 inter-shift periods, describing the structure of the fish community and its relationship with the environment during these periods. We described fish biodiversity using a limited set of descriptors, taking into account both species composition and relative species abundances. Inter-shift ecosystem states were defined based on the relationship between this description and the hydro-physico-chemical variables and climatic indices defining the main features of the environment. This relationship was described using generalized linear mixed models on the entire time series and for each inter-shift period. Our results indicate that (1) the fish community structure has been significantly modified, (2) environmental drivers influencing fish diversity have changed during these 3 periods, and (3) the fish-environment relationships have been modified over time. From this, we conclude a regime shift has occurred in the Gironde estuary. We also highlight that anthropogenic influences have increased, which re-emphasizes the importance of local management in maintaining fish diversity and associated goods and services within the context of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le site routier expérimental de Beaver Creek (62º 20’ 20’’ N – 140º 50’ 10’’ O) est sis sur la moraine de Beaver Creek pré datant le Dernier Maximum Glaciaire. Dans un périmètre d’un kilomètre carré, son relief, sa végétation, son sol et sa cryostratigraphie ont été étudiés avec une perspective géosystémique, afin d’en détailler la catena et sa structure. Ensuite, la cryostratigraphie a été interprétée pour suggérer un modèle d’évolution du paysage. Enfin, les changements récents y ont été intégrés en vue d’actualiser la tendance évolutive du géosystème. Il ressort de cet ouvrage que la durabilité du pergélisol est fortement appuyée par la présence des milieux humides dans les replats. Quelques affleurements de la moraine sont toujours visibles, quoique faiblement exprimés. Ils contiennent peu de glace et leur teneur en matière organique est mince. Quant aux dépressions, elles sont peu profondes et étendues. Non seulement elles ont hérité des sédiments érodés des crêtes, mais elles ont aussi fixé une quantité importante de glace et de matière organique par le truchement d’un pergélisol syngénétique (>15 m) généré par le climat et protégé par l’écosystème. Au moins un évènement de thermo-érosion est survenu avant le dernier stade d’aggradation syngénétique (Holocène), mais il n’a été que partiel. L’actuel réchauffement climatique menace d’engager un autre épisode de dégradation à l’échelle du bassin versant. Contrairement au changement climatique, l’utilisation du territoire provoque déjà la dégradation du pergélisol, mais de manière localisée seulement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia [1] produces a water-soluble blue-pigment named marennine [2] of economic interest. But the lack of knowledge of the ecological conditions, under which this microalga develops in its natural ecosystem, more especially bacteria H. ostrearia interactions, prevents any optimization of its culture in well-controlled conditions. The structure of the bacterial community was analyzed by PCR-TTGE before and after the isolation of H. ostrearia cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community at two time-scales. The differences in genetic fingerprints, more especially high between two H. ostrearia isolates (HO-R and HO-BM) showed also the highest differences in the bacterial structure [3] as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture Here we present a Q-TOF LC/MS metabolomic fingerprinting approach [3]: - to investigate differential metabolites of axenic versus non axenic H. ostrearia cultures. - to focus on the specific metabolites of a bacterial surrounding associated with the activation or inhibition of the microalga growing. The Agilent suite of data processing software makes feature finding, statistical analysis, and identification easier. This enables rapid transformation of complex raw data into biologically relevant metabolite information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban forests are often highly fragmented with many exotic species. Altered disturbance regimes and environmental pollutants influence urban forest vegetation. One of the best ways to understand the impacts of land-use on forest composition is through long-term research. In 1998, the Baltimore Ecosystem Study established eight forest plots to investigate the impacts of urbanization on natural ecosystems. Four plots were located in urban forest patches and four were located in rural forests. In 2015, I revisited these plots to measure abundances and quantify change in forest composition, diversity, and structure. Sapling, shrub, and seedling abundance were reduced in the rural plots. Alpha diversity and turnover was lower in the rural plots. Beta diversity was reduced in the rural plots. The structure of the urban plots was mostly unchanged, except for a highly reduced sapling layer. Beta diversity in the urban plots was consistent across surveys due to high species turnover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART) model to simulate leaf absorption of photosynthetically active radiation (lAPAR) for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear-sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80?0.82), light utilization varied seasonally (0.67?0.74), with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry-season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the ichthyofauna of the Castro Marim salt marsh based on monthly sampling surveys at five sites between September 2000 and August 2001. Sampling took place at night during rising neap tides using a 40-m long beach seine. We sampled a total of 7955 fish specimens (37 995.7 g), comprising 34 species and 17 families. The occurrence of most species was occasional, with Pomatoschistus microps (51.9%) and Atherina spp. (10.3%) being the most abundant species, accounting for 62.2% of the total fish captured. Biomass was dominated by the marine species Liza ramado (15.9%), Mullus surmuletus (13.5%), and Liza aurata (13.4%). Temperature and salinity showed a seasonal pattern, with minimums during the winter months and maximums during the summer months. In contrast, river flow peaked in winter and was lowest during summer. This pattern in river flow appears to be correlated with variations in the fish assemblages, which present two distinct compositions during the two periods. A few species characterise the winter fish assemblage, with dominance by residents and the presence of freshwater species, while the summer assemblage is characterised by the presence of many marine visitors that use the salt marsh in their first months/years of life. Temporal variations in total abundance and biomass reflect fluctuations in the dominant species. Resident species presented the highest abundance values, while marine adventitious species and marine species that use the salt marsh as a nursery ground contributed most to community species richness. Castro Marim salt marsh constitutes an important ecosystem for fishes, providing habitat for many species, especially juveniles, which find conditions within the salt marsh suitable for their development. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context Seed dispersal is recognized as having profound effects on the distribution, dynamics and structure of plant populations and communities. However, knowledge of how landscape structure shapes carnivore-mediated seed dispersal patterns is still scarce, thereby limiting our understanding of large-scale plant population processes. Objectives We aim to determine how the amount and spatial configuration of forest cover impacted the relative abundance of carnivorous mammals, and how these effects cascaded through the seed dispersal kernels they generated. Methods Camera traps activated by animal movement were used for carnivore sampling. Colour-coded seed mimics embedded in common figs were used to know the exact origin of the dispersed seed mimics later found in carnivore scats. We applied this procedure in two sites differing in landscape structure. Results We did not find between-site differences in the relative abundance of the principal carnivore species contributing to seed dispersal patterns, Martes foina. Mean dispersal distance and the probability of long dispersal events were higher in the site with spatially continuous and abundant forest cover, compared to the site with spatially aggregated and scarcer forest cover. Seed deposition closely matched the spatial patterning of forest cover in both study sites, suggesting behaviour-based mechanisms underpinning seed dispersal patterns generated by individual frugivore species. Conclusions Our results provide the first empirical evidence of the impact of landscape structure on carnivore-mediated seed dispersal kernels. They also indicate that seed dispersal kernels generated strongly depend on the effect that landscape structure exerts on carnivore populations, particularly on habitat-use preferences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.