952 resultados para dynamical scaling
Resumo:
We use numerical simulations to investigate how the chain length and topology of freely fluctuating knotted polymer rings affect their various spatial characteristics such as the radius of the smallest sphere enclosing momentary configurations of simulated polymer chains. We describe how the average value of a characteristic changes with the chain size and how this change depends on the topology of the modeled polymers. Although the scaling profiles of a spatial characteristic for distinct knot types do not intersect (at least, in the range of our data), the profiles for nontrivial knots intersect the corresponding profile obtained for phantom polymers, i.e., those that are free to explore all available topological states. For each knot type, this point of intersection defines its equilibrium length with respect to the spatial characteristic. At this chain length, a polymer forming a given knot type will not tend to increase or decrease. on average, the value of the spatial characteristic when the polymer is released from its topological constraint. We show interrelations between equilibrium lengths defined with respect to spatial characteristics of different character and observe that they are related to the lengths of ideal geometric configurations of the corresponding knot types.
The Dynamical Systems Approach to Cognition. Studies of Nonlinear Phenomena in Life Science - Vol 10
Resumo:
We explore in depth the validity of a recently proposed scaling law for earthquake inter-event time distributions in the case of the Southern California, using the waveform cross-correlation catalog of Shearer et al. Two statistical tests are used: on the one hand, the standard two-sample Kolmogorov-Smirnov test is in agreement with the scaling of the distributions. On the other hand, the one-sample Kolmogorov-Smirnov statistic complemented with Monte Carlo simulation of the inter-event times, as done by Clauset et al., supports the validity of the gamma distribution as a simple model of the scaling function appearing on the scaling law, for rescaled inter-event times above 0.01, except for the largest data set (magnitude greater than 2). A discussion of these results is provided.
Resumo:
Temporal dynamical analysis in fire sequences recorded from 1969 to 2008 in Canton Ticino (Switzerland) was carried out by using the Allan Factor statistics. The obtained results show the presence of daily periodicities, superimposed to two time-scaling regimes. The daily cycle vanishes for sequences of higher altitude fires, for which a single scaling behaviour is observed.
Resumo:
The speed of front propagation in fractals is studied by using (i) the reduction of the reaction-transport equation into a Hamilton-Jacobi equation and (ii) the local-equilibrium approach. Different equations proposed for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we analyze the main features of wave fronts resulting from this dynamic process, i.e., why they are accelerated and what is the exact form of this acceleration
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
A variational method for Hamiltonian systems is analyzed. Two different variationalcharacterization for the frequency of nonlinear oscillations is also suppliedfor non-Hamiltonian systems
Resumo:
In this paper we consider an insider with privileged information thatis affected by an independent noise vanishing as the revelation timeapproaches. At this time, information is available to every trader. Ourfinancial markets are based on Wiener space. In probabilistic terms weobtain an infinite dimensional extension of Jacod s theorem to covercases of progressive enlargement of filtrations. The application ofthis result gives the semimartingale decomposition of the originalWiener process under the progressively enlarged filtration. As anapplication we prove that if the rate at which the additional noise inthe insider s information vanishes is slow enough then there is noarbitrage and the additional utility of the insider is finite.
Resumo:
This paper establishes a general framework for metric scaling of any distance measure between individuals based on a rectangular individuals-by-variables data matrix. The method allows visualization of both individuals and variables as well as preserving all the good properties of principal axis methods such as principal components and correspondence analysis, based on the singular-value decomposition, including the decomposition of variance into components along principal axes which provide the numerical diagnostics known as contributions. The idea is inspired from the chi-square distance in correspondence analysis which weights each coordinate by an amount calculated from the margins of the data table. In weighted metric multidimensional scaling (WMDS) we allow these weights to be unknown parameters which are estimated from the data to maximize the fit to the original distances. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing a matrix and displaying its rows and columns in biplots.