959 resultados para droughts and floods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

South Tyrol is a region that has been often affected by various mountain hazards such as floods, flash floods, debris flows, rock falls, and snow avalanches. Furthermore, areas located in lower altitudes are often influenced by high temperatures and heat waves. Climate change is expected to influence the frequency, magnitude, and spatial extent of these natural phenomena. For this reason, local authorities and other stakeholders are in need of tools that can enable them to reduce the risk posed by these processes. In the present study, a variety of methods are applied at local level in different places in South Tyrol that aim at: (1) the assessment of future losses caused by the occurrence of debris flows by using a vulnerability curve, (2) the assessment of social vulnerability based on the risk awareness of the exposed people to floods, and (3) the assessment of spatial exposure and social vulnerability of the exposed population to heat waves. The results show that, in South Tyrol, the risk to a number of hazards can be reduced by: (1) improving documentation for past events in order to improve existing vulnerability curves and the assessment of future losses, (2) raising citizens' awareness and responsibility to improve coping capacity to floods, and (3) extending heat wave early warning systems to more low-lying areas of South Tyrol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The magnitudes of the largest known floods of the River Rhine in Basel since 1268 were assessed using a hydraulic model drawing on a set of pre-instrumental evidence and daily hydrological measurements from 1808. The pre-instrumental evidence, consisting of flood marks and documentary data describing extreme events with the customary reference to specific landmarks, was “calibrated” by comparing it with the instrumental series for the overlapping period between the two categories of evidence (1808–1900). Summer (JJA) floods were particularly frequent in the century between 1651–1750, when precipitation was also high. Severe winter (DJF) floods have not occurred since the late 19th century despite a significant increase in winter precipitation. Six catastrophic events involving a runoff greater than 6000 m 3 s-1 are documented prior to 1700. They were initiated by spells of torrential rainfall of up to 72 h (1480 event) and preceded by long periods of substantial precipitation that saturated the soils, and/or by abundant snowmelt. All except two (1999 and 2007) of the 43 identified severe events (SEs: defined as having runoff > 5000 and < 6000 m 3 s -1) occurred prior to 1877. Not a single SE is documented from 1877 to 1998. The intermediate 121-year-long “flood disaster gap” is unique over the period since 1268. The effect of river regulations (1714 for the River Kander; 1877 for the River Aare) and the building of reservoirs in the 20th century upon peak runoff were investigated using a one-dimensional hydraulic flood-routing model. Results show that anthropogenic effects only partially account for the “flood disaster gap” suggesting that variations in climate should also be taken into account in explaining these features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The floods that occurred on the Aare and Rhine rivers in May 2015 and the mostly successful handling of this event in terms of flood protection measures are a good reminder of how important it is to comprehend the causes and processes involved in such natural hazards. While the needed data series of gauge measurements and peak discharge calculations reach back to the 19th century, historical records dating further back in time can provide additional and useful information to help understanding extreme flood events and to evaluate prevention measures such as river dams and corrections undertaken prior to instrumental measurements. In my PhD project I will use a wide range of historical sources to assess and quantify past extreme flood events. It is part of the SNF-funded project “Reconstruction of the Genesis, Process and Impact of Major Pre-instrumental Flood Events of Major Swiss Rivers Including a Peak Discharge Quantification” and will cover the research locations Fribourg (Saane R.), Burgdorf (Emme R.), Thun, Bern (both Aare R.), and the Lake of Constance at the locations Lindau, Constance and Rorschach. My main goals are to provide a long time series of quantitative data for extreme flood events, to discuss the occurring changes in these data, and to evaluate the impact of the aforementioned human influences on the drainage system. Extracting information given in account books from the towns of Basel and Solothurn may also enable me to assess the frequency and seasonality of less severe river floods. Finally, historical information will be used for remodeling the historical hydrological regime to homogenize the historical data series to modern day conditions and thus make it comparable to the data provided by instrumental measurements. The method I will apply for processing all information provided by historical sources such as chronicles, newspapers, institutional records, as well as flood marks, paintings and archeological evidence has been developed and successfully applied to the site of Basel by Wetter et al. (2011). They have also shown that data homogenization is possible by reconstructing previous stream flow conditions using historical river profiles and by carefully observing and re-constructing human changes of the river bed and its surroundings. Taken all information into account, peak discharges for past extreme flood events will be calculated with a one-dimensional hydrological model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The end of the last interglacial period, ~118 kyr ago, was characterized by substantial ocean circulation and climate perturbations resulting from instabilities of polar ice sheets. These perturbations are crucial for a better understanding of future climate change. The seasonal temperature changes of the tropical ocean, however, which play an important role in seasonal climate extremes such as hurricanes, floods and droughts at the present day, are not well known for this period that led into the last glacial. Here we present a monthly resolved snapshot of reconstructed sea surface temperature in the tropical North Atlantic Ocean for 117.7±0.8 kyr ago, using coral Sr/Ca and d18O records. We find that temperature seasonality was similar to today, which is consistent with the orbital insolation forcing. Our coral and climate model results suggest that temperature seasonality of the tropical surface ocean is controlled mainly by orbital insolation changes during interglacials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This communication presents an overview of their first results and innovate methodologies, focused in their possibilities and limitations for the reconstruction of recent floods and paleofloods over the World.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Santa Irene flood, at the end of October 1982, is one of the most dramatically and widely reported flood events in Spain. Its renown is mainly attributable to the collapse of the Tous dam, but its main message is to be the paradigm of the incidence of the maritime/littoral weather and its temporal sea-level rise on the coastal plains inland floods. The Santa Irene flood was attributable to a meteorological phenomenon known as gota fría (cold drop), a relatively frequent and intense rainy phenomenon on the Iberian Peninsula, particularly on the Spanish E to SE inlands and coasts. There are some circumstances that can easily come together to unleash the cold drop there: cold and dry polar air masses coming onto the whole Iberian Peninsula and the north of Africa, high sea-water temperatures, and low atmospheric pressure (cyclone) areas in the western Mediterranean basin; these circumstances are quite common during the autumn and, as it happens, in other places around the world (E/SE Africa). Their occurrence, however, shows a great space-temporal variability (in a similar way to hurricanes on Caribbean and western North Atlantic areas or also in a similar way to typhoons). In fact, all of these are equivalent, although different, phenomena, able to have a different magnitude each time. This paper describes the results of a detailed analysis and reflection about this cold drop phenomenon as a whole, on the generation of its rains, and on the different natures and consequences of its flood. This paper also explains the ways in which the nearby maritime weather and the consequential sea level govern floods on different zones of any hydrographical basin. The Santa Irene case can be considered as a paradigm to explain the influence of nearby maritime climatic conditions on flooding phenomena not only in coastal but also in upward inland areas.