964 resultados para drivers scheduling problem
Resumo:
Ce projet de recherche a été réalisé avec la collaboration de FPInnovations. Une part des travaux concernant le problème de récolte chilien a été effectuée à l'Instituto Sistemas Complejos de Ingeniería (ISCI) à Santiago (Chili).
Resumo:
Reinforcement Learning (RL) refers to a class of learning algorithms in which learning system learns which action to take in different situations by using a scalar evaluation received from the environment on performing an action. RL has been successfully applied to many multi stage decision making problem (MDP) where in each stage the learning systems decides which action has to be taken. Economic Dispatch (ED) problem is an important scheduling problem in power systems, which decides the amount of generation to be allocated to each generating unit so that the total cost of generation is minimized without violating system constraints. In this paper we formulate economic dispatch problem as a multi stage decision making problem. In this paper, we also develop RL based algorithm to solve the ED problem. The performance of our algorithm is compared with other recent methods. The main advantage of our method is it can learn the schedule for all possible demands simultaneously.
Resumo:
In this paper we present a genetic algorithm with new components to tackle capacitated lot sizing and scheduling problems with sequence dependent setups that appear in a wide range of industries, from soft drink bottling to food manufacturing. Finding a feasible solution to highly constrained problems is often a very difficult task. Various strategies have been applied to deal with infeasible solutions throughout the search. We propose a new scheme of classifying individuals based on nested domains to determine the solutions according to the level of infeasibility, which in our case represents bands of additional production hours (overtime). Within each band, individuals are just differentiated by their fitness function. As iterations are conducted, the widths of the bands are dynamically adjusted to improve the convergence of the individuals into the feasible domain. The numerical experiments on highly capacitated instances show the effectiveness of this computational tractable approach to guide the search toward the feasible domain. Our approach outperforms other state-of-the-art approaches and commercial solvers. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Genetic algorithms are commonly used to solve combinatorial optimizationproblems. The implementation evolves using genetic operators (crossover, mutation,selection, etc.). Anyway, genetic algorithms like some other methods have parameters(population size, probabilities of crossover and mutation) which need to be tune orchosen.In this paper, our project is based on an existing hybrid genetic algorithmworking on the multiprocessor scheduling problem. We propose a hybrid Fuzzy-Genetic Algorithm (FLGA) approach to solve the multiprocessor scheduling problem.The algorithm consists in adding a fuzzy logic controller to control and tunedynamically different parameters (probabilities of crossover and mutation), in anattempt to improve the algorithm performance. For this purpose, we will design afuzzy logic controller based on fuzzy rules to control the probabilities of crossoverand mutation. Compared with the Standard Genetic Algorithm (SGA), the resultsclearly demonstrate that the FLGA method performs significantly better.
Resumo:
The field of automated timetabling and scheduling meeting all the requirementsthat we call constraints is always difficult task and already proved as NPComplete. The idea behind my research is to implement Genetic Algorithm ongeneral scheduling problem under predefined constraints and check the validityof results, and then I will explain the possible usage of other approaches likeexpert systems, direct heuristics, network flows, simulated annealing and someother approaches. It is observed that Genetic Algorithm is good solutiontechnique for solving such problems. The program written in C++ and analysisis done with using various tools explained in details later.
Resumo:
This work aims to "build" rostering urban bus crews to minimize the cost of overtime. For this purpose a mathematical model was developed based on case study in an urban transport company in the metropolitan region of Natal. This problem is usually known in the literature as the Crew Scheduling Problem (CSP) and classified as NP-hard. The mathematical programming takes into account constraints such as: completion of all trips, daily and maximum allowable range of home and / or food. We used the Xpress-MP software to implement and validate the proposed model. For the tested instances the application of the model allowed a reduction in overtime from 38% to 84%
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nowadays, computing is migrating from traditional high performance and distributed computing to pervasive and utility computing based on heterogeneous networks and clients. The current trend suggests that future IT services will rely on distributed resources and on fast communication of heterogeneous contents. The success of this new range of services is directly linked to the effectiveness of the infrastructure in delivering them. The communication infrastructure will be the aggregation of different technologies even though the current trend suggests the emergence of single IP based transport service. Optical networking is a key technology to answer the increasing requests for dynamic bandwidth allocation and configure multiple topologies over the same physical layer infrastructure, optical networks today are still “far” from accessible from directly configure and offer network services and need to be enriched with more “user oriented” functionalities. However, current Control Plane architectures only facilitate efficient end-to-end connectivity provisioning and certainly cannot meet future network service requirements, e.g. the coordinated control of resources. The overall objective of this work is to provide the network with the improved usability and accessibility of the services provided by the Optical Network. More precisely, the definition of a service-oriented architecture is the enable technology to allow user applications to gain benefit of advanced services over an underlying dynamic optical layer. The definition of a service oriented networking architecture based on advanced optical network technologies facilitates users and applications access to abstracted levels of information regarding offered advanced network services. This thesis faces the problem to define a Service Oriented Architecture and its relevant building blocks, protocols and languages. In particular, this work has been focused on the use of the SIP protocol as a inter-layers signalling protocol which defines the Session Plane in conjunction with the Network Resource Description language. On the other hand, an advantage optical network must accommodate high data bandwidth with different granularities. Currently, two main technologies are emerging promoting the development of the future optical transport network, Optical Burst and Packet Switching. Both technologies respectively promise to provide all optical burst or packet switching instead of the current circuit switching. However, the electronic domain is still present in the scheduler forwarding and routing decision. Because of the high optics transmission frequency the burst or packet scheduler faces a difficult challenge, consequentially, high performance and time focused design of both memory and forwarding logic is need. This open issue has been faced in this thesis proposing an high efficiently implementation of burst and packet scheduler. The main novelty of the proposed implementation is that the scheduling problem has turned into simple calculation of a min/max function and the function complexity is almost independent of on the traffic conditions.
Resource-allocation capabilities of commercial project management software. An experimental analysis
Resumo:
When project managers determine schedules for resource-constrained projects, they commonly use commercial project management software packages. Which resource-allocation methods are implemented in these packages is proprietary information. The resource-allocation problem is in general computationally difficult to solve to optimality. Hence, the question arises if and how various project management software packages differ in quality with respect to their resource-allocation capabilities. None of the few existing papers on this subject uses a sizeable data set and recent versions of common software packages. We experimentally analyze the resource-allocation capabilities of Acos Plus.1, AdeptTracker Professional, CS Project Professional, Microsoft Office Project 2007, Primavera P6, Sciforma PS8, and Turbo Project Professional. Our analysis is based on 1560 instances of the precedence- and resource-constrained project scheduling problem RCPSP. The experiment shows that using the resource-allocation feature of these packages may lead to a project duration increase of almost 115% above the best known feasible schedule. The increase gets larger with increasing resource scarcity and with increasing number of activities. We investigate the impact of different complexity scenarios and priority rules on the project duration obtained by the software packages. We provide a decision table to support managers in selecting a software package and a priority rule.
Resumo:
Abstract Transport is the foundation of any economy: it boosts economic growth, creates wealth, enhances trade, geographical accessibility and the mobility of people. Transport is also a key ingredient for a high quality of life, making places accessible and bringing people together. The future prosperity of our world will depend on the ability of all of its regions to remain fully and competitively integrated in the world economy. Efficient transport is vital in making this happen. Operations research can help in efficiently planning the design and operating transport systems. Planning and operational processes are fields that are rich in combinatorial optimization problems. These problems can be analyzed and solved through the application of mathematical models and optimization techniques, which may lead to an improvement in the performance of the transport system, as well as to a reduction in the time required for solving these problems. The latter aspect is important, because it increases the flexibility of the system: the system can adapt in a faster way to changes in the environment (i.e.: weather conditions, crew illness, failures, etc.). These disturbing changes (called disruptions) often enforce the schedule to be adapted. The direct consequences are delays and cancellations, implying many schedule adjustments and huge costs. Consequently, robust schedules and recovery plans must be developed in order to fight against disruptions. This dissertation makes contributions to two different fields: rail and air applications. Robust planning and recovery methods are presented. In the field of railway transport we develop several mathematical models which answer to RENFE’s (the major railway operator in Spain) needs: 1. We study the rolling stock assignment problem: here, we introduce some robust aspects in order to ameliorate some operations which are likely to fail. Once the rolling stock assignment is known, we propose a robust routing model which aims at identifying the train units’ sequences while minimizing the expected delays and human resources needed to perform the sequences. 2. It is widely accepted that the sequential solving approach produces solutions that are not global optima. Therefore, we develop an integrated and robust model to determine the train schedule and rolling stock assignment. We also propose an integrated model to study the rolling stock circulations. Circulations are determined by the rolling stock assignment and routing of the train units. 3. Although our aim is to develop robust plans, disruptions will be likely to occur and recovery methods will be needed. Therefore, we propose a recovery method which aims to recover the train schedule and rolling stock assignment in an integrated fashion all while considering the passenger demand. In the field of air transport we develop several mathematical models which answer to IBERIA’s (the major airline in Spain) needs: 1. We look at the airline-scheduling problem and develop an integrated approach that optimizes schedule design, fleet assignment and passenger use so as to reduce costs and create fewer incompatibilities between decisions. Robust itineraries are created to ameliorate misconnected passengers. 2. Air transport operators are continuously facing competition from other air operators and different modes of transport (e.g., High Speed Rail). Consequently, airline profitability is critically influenced by the airline’s ability to estimate passenger demands and construct profitable flight schedules. We consider multi-modal competition including airline and rail, and develop a new approach that estimates the demand associated with a given schedule; and generates airline schedules and fleet assignments using an integrated schedule design and fleet assignment optimization model that captures the impacts of schedule decisions on passenger demand.