374 resultados para dormancy
Resumo:
The acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) complement from dormant hazel (Corylus avellana L.) seeds was found to exhibit significant electrophoretic heterogeneity partially attributable to the presence of distinct molecular forms. In axiferous tissue, total acid phosphatase activity increased in a biphasic fashion during chilling, a treatment necessary to alleviate seed dormancy. Three acid phosphatase isozymes were isolated from cotyledons of dormant hazel seeds by successive ammonium sulphate precipitation, size-exclusion, Concanavalin A affinity, cation- and anion-exchange chromatographies resulting in 75-, 389- and 191-fold purification (APase1, APase2, APase3, respectively). The three glycosylated isoforms were isolated to catalytic homogeneity as determined by electrophoretic, kinetic and heat-inactivation studies. The native acid phosphatase complement of hazel seeds had an apparent Mr of 81.5±3.5 kDa as estimated by size-exclusion chromatography, while the determined pI values were 5.1 (APase1), 6.9 (APase2) and 7.3 (APase3). The optimum pH for p-nitrophenyl phosphate hydrolysis was pH 3 (APase1), pH 5.6 (APase2) and pH 6 (APase3). The hazel isozymes hydrolysed a variety of phosphorylated substrates in a non-specific manner, exhibiting low Km and the highest specificity constant (Vmax/Km) for pyrophosphate. They were not primary phytases since they could not initiate phytic acid hydrolysis, while APase2 and APase3 had significant phospho-tyrosine phosphatase activity. Inorganic phosphate was a competitive inhibitor, while activity was significantly impaired in the presence of vanadate and fluoride.
Resumo:
Near isogenic lines varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) in cv. Mercia (2005/6 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cvs Maris Huntsman and Maris Widgeon (2007/8 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) were compared at one field site, but within different systems (‘organic’, O, 2005/6 to 2007/8 v ‘intensive’, I, 2005/6 to 2010/11). Further experiments at the site (2006/7 to 2008/9) compared 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. Gibberellin (GA) insensitive dwarfing alleles (Rht-B1b; Rht-B1c; Rht-D1b; Rht-D1c) could reduce α-amylase activity and/or increase Hagberg falling number (HFN) but effects depended greatly on system, background and season. Only Rht-B1c increased grain dormancy despite producing plants taller than Rht-D1c. The GA-sensitive Rht8c+Ppd-D1a in Mercia was associated with reduced HFN but analysis of the DH population suggested this was more closely linked with Ppd-D1a, rather than Rht8c. The severe GA-sensitive dwarfing allele Rht12 was associated with reduced HFN. Instability in HFN over season tended to increase with degree of dwarfing. There was a negative association between mean grain weight and HFN that was in addition to effects of Rht and Ppd-D1 allele.
Resumo:
Abstract: During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Biochemical and physiological analyses were conducted on different cultivars ('Wellington', 'Sherpa' and 'Red Baron') grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 degrees C) and stored under different regimes (1, 3, 6 and 6 1 degrees C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 degrees C, producing a considerable saving in energy and costs.
Resumo:
Horticulture may be defined as the intensive cultivation and harvesting of plants for financial, environmental and social profit. Evidence for the occurrence of climate change more generally and reasons why this process is happening with such rapidity are discussed. These changes are then considered in terms of the effects which might alter the options for worldwide intensive horticultural cultivation of plants and its interactions with other organisms. Potentially changing climates will have considerable impact upon horticultural processes and productivity across the globe . Climate change will alter the growth patterns and capabilities for flowering and fruiting of many perennial and annual horticultural plants. In some regions perennial fruit crops are likely to experience substantial difficulties because of altered seasonal conditions affecting dormancy, acclimation and subsequent flowering and fruiting. Elsewhere these crops may benefit from the effects of climate change as a result of reduced cold damage and increased length of the growing season. There will be considerable effects for aerial and edaphic microbes invertebrate and vertebrate animals which have benign and pathogenic interactions with horticultural plants. Microbial activity and as a consequence soil fertility may alter. New pests and pathogens may become prevalent and damaging in areas where the climate previously excluded their activity. Vital resources such as water and nutrients may become scarce in some regions reducing opportunities for growing horticultural crops. Wind and windiness are significant factors governing the success of horticultural plants and the scale of their impacts may change as climate alters. Damaging winds could limit crop growing in areas where previously it flourished. Forms of macro- and micro-landscaping will change as the spectrum of plants which can be cultivated alters and the availability of resources and their cost changes driven by scarcities brought about by climate change. The horticultural economy of India as it may be affected by climate change is described as an individual example in a detailed study.
Resumo:
Unpredictable flooding is a major constraint to rice production. It can occur at any growth stage. The effect of simulated flooding post-anthesis on yield and subsequent seed quality of pot-grown rice (Oryza sativa L.) plants was investigated in glasshouses and controlled-environment growth cabinets. Submergence post-anthesis (9-40 DAA) for 3 or 5 days reduced seed weight of japonica rice cv. Gleva, with considerable pre-harvest sprouting (up to 53%). The latter was greater the later in seed development and maturation that flooding occurred. Sprouted seed had poor ability to survive desiccation or germinate normally upon rehydration, whereas the effects of flooding on the subsequent air-dry seed storage longevity (p50) of the non-sprouted seed fraction was negligible. The indica rice cvs IR64 and IR64Sub1 (introgression of submergence tolerance gene Submergence1A-1) were both far more tolerant to flooding post-anthesis than cv. Gleva: four days’ submergence of these two near-isogenic cultivars at 10-40 DAA resulted less than 1% sprouted seeds. The presence of the Sub1A-1 allele in cv. IR64Sub1 was verified by gel electrophoresis and DNA sequencing. It had no harmful effect on loss in seed viability during storage compared with IR64 in both control and flooded environments. Moreover, the germinability and changes in dormancy during seed development and maturation were very similar to IR64. The efficiency of using chemical spray to increase seed dormancy was investigated in the pre-harvest sprouting susceptible rice cv. Gleva. Foliar application of molybdenum at 100 mg L-1 reduced sprouted seeds by 15-21% following 4 days’ submergence at 20-30 DAA. Analyses confirmed that the treatment did result in molybdenum uptake by the plants, and also tended to increase seed abscisic acid concentration. The latter was reduced by submergence and declined exponentially during grain ripening. The selection of submergence-tolerant varieties was more successful than application of molybdenum in reducing pre-harvest sprouting.
Resumo:
Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.
Resumo:
The aim of this work was to Study biochemical variations of IAA (indole-3-acetic acid), ABA (abscisic acid). PAs (polyamines) and amino acids at endogenous levels, during seed germination in Ocotea catharinensis. Seeds were germinated in a vermiculite substratum (100%), samples being collected after 15, 30 and 60 days. Total amino acid levels decreased during the first 15 days. Followed by all increment at the end of germination. Among amino acids, higher concentration was observed in asparagine, this being the predominant amino acid during the whole germination period. Total PAs (free + conjugated) content increased during the first 15 days, followed by a decrease and stabilization between 30 and 60 days of germination. Among the PAs, free putrescine levels rose during the first 15 days, followed by a drop and Stabilization up to 60 days of germination, while spermidine and spermine (spm) contents diminished during the period. Only spin was detected in a conjugated form, with increasing concentrations starting from 30 days on. IAA levels increased during tire first 15 days. followed by a decrease and stabilization until the end of germination (60 days), while ABA contents dwindled during the first 15 days, with similar Values until the end of germination.
Resumo:
Background and Aims Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination. Methods Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC. Key Results During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied. Conclusions The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators.
Resumo:
The brazilian-plum (Spondias tuberosa, His) is a tropical fruit tree that has been consolidated in the market for agribusiness processing, due to its characteristic flavor of fruit. Accordingly, studies to optimize the propagation of plants are necessary for production of seedlings with agronomic and quality assurance measures. This study aimed at determining the efficient techniques for uniform seed germination, as brazilian-plum seed present mechanical dormancy, and establish optimal culture media for multiplication of shoots from the in vitro micropropagation. Firstly, in a greenhouse at the Universidade Federal do Rio Grande do Norte, was evaluated the influence of different methods of breaking dormancy in the emergence of seedlings of brazilian-plum and speed of germination (IVG) of seeds. After 60 days of cultivation, it was found that splay in the distal portion of the seed was the best treatment, with rates of 85.33% in germinability and 3.415 of IVG, compared with the treatment of seed-soaking in water for 12h + humus and the control group. Subsequently, new sources of seedling explants were obtained in studies of tissue culture. Laboratory of Plant Biotechnology that the university, was used stem apex, nodal segments and internodes in search of decontamination with various concentrations of calcium hypochlorite [Ca(OCl)2] and micropropagation, inoculating them in half WPM (1980) with various concentrations of 6-benzylaminopurine (BAP). We used 10 sample units with three replications for different concentrations of [Ca(OCl)2], BAP and explants type. After thirty days, which was observed for the control of contamination, during the establishment in vitro, concentrations of [Ca(OCl)2] between 0.5% and 2.0% were effective in combating exogenous contamination of the apex. In nodal segments and internodes, concentrations of [Ca(OCl)2] between 1.0% and 2.0% and 1.5% and 2.0% were respectively, sufficient to reduce the percentage of losses in these infestations explants. For micropropagation, the culture medium supplemented with 0.1 mg.L-1 BAP promotes better development of multiple shoots per explants from nodal segment. However, success does not get to shoot training in internodal segment
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This experiment were performed to evaluate methods of seeds scarification for overcoming dormancy and the efficacy of six herbicides registered for sugarcane to control adult plants of Mcharantia. The experimental design was completely randomized, with four replications in both trials. The first trial is a factorial 2x8 (two times of seeds collection (2006 and 2007) with eight methods of breaking dormancy (mechanical scarification; 100% and 50% concentrated sulfuric acid; 2% potassium nitrate for three and six hours; heat dried at 60 degrees C; hot water at 60 degrees C and an untreated control). In the second trial evaluated the control of M. charantia through six different herbicides: Imazapic, Metsulfuron-methyl, Metribuzin, 2,4-D, Amicarbazone, Paraquat and a control without herbicide application. Thus, it can be concluded that the seeds were immersed in concentrated sulfuric acid for three minutes and potassium nitrate for three hours gave a higher percentage and germination speed and the herbicide Metribuzin reached, albeit belatedly, a total control of M. charantia.
Resumo:
Este trabalho objetivou avaliar os efeitos de métodos de superação de dormência sobre a germinação das sementes de Ipomoea grandifolia, I. hederifolia, I. nil, I. quamoclit, Merremia aegyptia e M. cissoides. Os tratamentos consistiram em ácido sulfúrico concentrado, nitrato de potássio, água quente e calor seco (50 ºC), lixa e fogo. Constatou-se que o ácido sulfúrico promoveu aumento na germinação das sementes de I. grandifolia (58, 37, 22 e 34%), I. hederifolia (76, 49, 82 e 55%), I. quamoclit (43, 33, 66 e 35%), I. nil (69, 79, 72 e 62%), M. cissoides (8, 19, 35 e 57%) e M. aegyptia (24, 64, 56 e 63%) após períodos de imersão de 5, 10, 15 e 20 minutos, respectivamente. A água (20 e 40 minutos), o calor seco (20 e 40 minutos) e o fogo melhoraram a germinação de I. grandifolia (68, 59, 62, 67 e 59%), M. cissoides (50, 52, 18, 25 e 46%) e M. aegyptia (54, 47, 21, 21 e 45%), respectivamente. O calor seco de 20 e 40 minutos melhorou a germinação de I. nil (49 e 36%), e o de 40 minutos, a de I. hederifolia (70%). O uso de nitrato de potássio e lixa não proporcionou melhoria na germinação das sementes.
Resumo:
Foram conduzidos três ensaios com o objetivo de estudar os efeitos de diferentes métodos de quebra de dormência das sementes, da qualidade da luz e da profundidade de semeadura na germinação e emergência do Xanthium strumarim L. (carrapichão). No primeiro ensaio, sob condições de câmara de crescimento, os tratamentos constaram de 5 métodos de quebra de dormência: mecânico (lixa), químico (H2SO4 conc. por 10 min.), pré-tratamento em água (imersão por 2 horas), físico (choque térmico: água à 80oC por 2 min.) e testemunha, que proporcionaram 100%, 93%, 93%, 87% e 80% de germinação, respectivamente, sem haver diferença estatística entre os mesmos. O pré-tratamento em água apresentou menor índice de velocidade de germinação (IVG) e os demais não diferiram significativamente entre si. No segundo ensaio, também sob condições de câmara de crescimento, os tratamentos de qualidade da luz constaram de 6 filtros de luz, que resultaram nas seguintes porcentagens de germinação: azul - com refletividade máxima a 450 nm (13%), verde-500 nm (33%), vermelho-700 nm (13%), vermelho/distante-760 nm (7%), ausência de luz (26%) e transparente - sem absortividade na região de 380 a 760 nm (testemunha, 73%), indicando sensibilidade das sementes à qualidade de luz. No terceiro ensaio, sob condições de casa-de-vegetação, os tratamentos foram diferentes profundidades de semeadura (0 a 20 cm, em intervalos de 2 cm), sendo que o máximo de emergência ocorreu no intervalo de 0 a 8 cm, no qual foi observado 67% de emergência do carrapichão, com maior índice de velocidade emergência (IVE), sendo que após os 16 cm, praticamente não houve emergência.
Resumo:
O capim-camalote (Rottboellia cochinchinensis), originário da Índia, é encontrado em várias regiões do mundo, sendo uma espécie temida pelos agricultores devido ao seu difícil controle e avanço crescente. Objetivou-se com este trabalho estudar os fatores que afetam a germinação das sementes dessa espécie. Foram avaliados os métodos de superação de dormência: 1 - escarificação mecânica, 2 - escarificação química, 3 - tratamento pré-semeadura, 4 - tratamento químico, 5 - tratamento hormonal e 6 - sementes não tratadas. Foram estudados os efeitos da temperatura (5, 10, 15, 20, 25, 30, 35 e 40 ºC), do fotoperíodo (6, 8, 10, 12, 14 e 16 horas de luz), da qualidade da luz incidente (branca, vermelha, vermelha distante, amarela, verde, azul e ausência de luz), da disponibilidade de água (0,0, -0,2, -0,3, -0,4, -0,5, -0,6, -1,2 e -2,4 MPa) e da viabilidade de suas sementes quando armazenadas sob condições de câmara fria e seca e sob condições naturais. Todos os ensaios foram conduzidos por 30 dias em câmara de germinação, com os tratamentos arranjados em delineamento experimental inteiramente casualizado, em quatro repetições. Verificou-se que as sementes apresentaram elevado índice de germinação, praticamente não apresentaram dormência e não se mostraram fotoblásticas. A disponibilidade de água foi indispensável para a germinação, com temperatura ideal de 25 °C. As sementes recém-coletadas são inviáveis para o estudo da germinação, apresentando redução na germinação quando armazenadas sob condição de câmara fria e seca.