898 resultados para diurnal and nocturnal feeding
Resumo:
An observational study was undertaken to measure odour and dust (PM10 and PM2.5) emission rates and identify non-methane volatile organic compounds (NMVOCs) and odorants in the exhaust air from two tunnel-ventilated layer-chicken sheds that were configured with multi-tiered cages and manure belts. The study sites were located in south-eastern Queensland and the West Gippsland region of Victoria, Australia. Samples were collected in summer and winter on sequential days across the manure-belt cleaning cycle. Odour emissions ranged from 58 to 512 ou/s per 1000 birds (0.03-0.27 ou/s.kg) and dust emission rates ranged 0.014-0.184 mg/s per 1000 birds for PM10 and 0.001-0.190 mg/s per 1000 birds for PM2.5. Twenty NMVOCs were identified, including three that were also identified as odorants using thermal desorption-gas chromatography-mass spectrometry/olfactometry analysis. Odour emission rates were observed to vary with the amount of manure accumulation on the manure belts, being lowest 2-4 days after removing manure. Odour emission rates were also observed to vary with diurnal and seasonal changes in ventilation rate. Dust emissions were observed to increase with ventilation rate but not with manure accumulation. Some NMVOCs were identified at both farms and in different seasons whereas others were observed only at one farm or in one season, indicating that odorant composition was influenced by farm-specific practices and season.
Resumo:
In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.
Resumo:
Parthenium (Parthenium hysterophorus L.) is one of the most aggressive herbaceous weeds of the Asteraceae family. It is widely distributed, almost across the world and has become the most important invasive weed. Comprehensive information on interference and control of this devastating species is required to facilitate better management decisions. A broad review on the interference and management of this weed is presented here. Inspite of its non-tropical origin, parthenium grows quite successfully under a wide range of environmental conditions. It is spreading rapidly in Australia, Western Africa, Asia, and Caribbean countries, and has become a serious weed of pastures, wastelands, roadsides, railwaysides, water courses, and agricultural crops. The infestations of parthenium have been reported to reduce grain and forage yields by 40–90%. The spread of parthenium has been attributed to its allelopathic activity, strong competitiveness for soil moisture and nutrients, and its capability to exploit natural biodiversity. Allelochemicals released from parthenium has been reported to decrease germination and growth of agronomic crops, vegetables, trees, and many other weed species. Growth promoting effects of parthenium extracts at low concentrations have also been reported in certain crops. Many pre- and post-emergence herbicides have been evaluated for the control of parthenium in cropped and non-cropped areas. The most effective herbicides are clomazone, metribuzin, atrazine, glyphosate, metsulfuron methyl, butachlor, bentazone, dicamba, and metsulfuron methyl. Extracts, residues, and essential oils of many allelopathic herbs (Cassia, Amaranthus, and Xanthium species), grasses (Imperata and Desmostachya species), and trees (Eucalyptus, Azadirachta, Mangifera species, etc.) have demonstrated inhibitory activities on seed germination and seedling growth of parthenium. Metabolites of several fungi, e.g., Fusarium oxysporun and Fusarium monilifonne, exhibit bioherbicidal activity against seeds and seedlings of this weed. Intercropping, displacement by competitive plant species like Cassia species, bisset bluegrass, florgen blugress, buffelgrass, along with the use of biological control agents like Mexican beetle, seed-feeding and stem-boring weevils, stem-galling and leaf-mining moth, and sap-feeding plant hopper, have been reported as possible strategies for the management of parthenium. An appropriate integration of these approaches could help minimize spread of parthenium and provide sustainable weed management with reduced environmental concerns.
Resumo:
Tension-band castration of cattle is gaining favour because it is relatively simple to perform and is promoted by retailers of the devices as a humane castration method. Furthermore, retailers encourage delaying castration to exploit the superior growth rates of bulls compared with steers. Two experiments were conducted, under tropical conditions, comparing tension banding and surgical castration of weaner (7–10 months old) and mature (22–25 months old) Bos indicus bulls with and without pain management (ketoprofen or saline injected intramuscularly immediately prior to castration). Welfare outcomes were assessed using a wide range of measures; this paper reports on the behavioural responses of the bulls and an accompanying paper reports on other measures. Behavioural data were collected at intervals by direct observation and continuously via data loggers on the hind leg of the bulls to 4 weeks post-castration. Tension-banded bulls performed less movement in the crush/chute than the surgically castrated bulls during the procedures (weaner: 2.63 vs. 5.69, P < 0.001; mature: 1.00 vs. 5.94; P < 0.001 for tension-band and surgical castration, respectively), indicating that tension banding was less painful then surgical castration during conduct. To 1.5 h post-castration, tension-banded bulls performed significantly (all P < 0.05) more active behavioural responses indicative of pain compared with surgical castrates, e.g., percentage time walking forwards (weaner: 15.0% vs. 8.1%; mature: 22.3% vs. 15.1%), walking backwards (weaner: 4.3% vs. 1.4%; mature: 2.4% vs. 0.5%), numbers of tail movements (weaner: 21.9 vs. 1.4; mature: 51.5 vs. 39.4) and leg movements (weaner: 12.9 vs. 0.9; mature: 8.5 vs. 1.5), respectively. In contrast, surgically castrated bulls performed more immobile behaviours compared with tension-banded bulls (e.g., standing in mature bulls was 56.6% vs. 34.4%, respectively, P = 0.002). Ketoprofen administration appeared effective in moderating pain-related behaviours in the mature bulls from 1.5 to 3 h, e.g., reducing abnormal standing (0.0% vs. 7.7%, P = 0.009) and increasing feeding (12.7% vs. 0.0%, P = 0.048) in NSAID- and saline-treated bulls, respectively. There were few behavioural differences subsequent to 24 h post-castration, but some limited evidence of chronic pain (3–4 weeks post-castration) with both methods. Interpretation, however, was difficult from behaviours alone. Thus, tension banding is less painful than surgical castration during conduct of the procedures and pain-related behavioural responses differ with castration method (active restlessness in response to tension banding and minimisation of movement in response to surgical castration). Ketoprofen administered immediately prior to castration was somewhat effective in reducing pain, particularly in the mature bulls.
Resumo:
The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the 'apple' type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings. © 2013 Blackwell Verlag GmbH.
Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations
Resumo:
One of the most important modes of summer season precipitation variability over the Indian region, the diurnal cycle, is studied using the Tropical Rainfall Measuring Mission 3-hourly, 0.25 degrees x 0.25 degrees 3B42 rainfall product for nine years (1999-2007). Most previous studies have provided an analysis of a single year or a few years of satellite-or station-based rainfall data. Our study aims to systematically analyze the statistical characteristics of the diurnal-scale signature of rainfall over the Indian and surrounding regions. Using harmonic analysis, we extract the signal corresponding to diurnal and subdiurnal variability. Subsequently, the 3-hourly time period or the octet of rainfall peak for this filtered signal, referred to as the ``peak octet,'' is estimated, with care taken to eliminate spurious peaks arising out of Gibbs oscillations. Our analysis suggests that over the Bay of Bengal, there are three distinct modes of the peak octet of diurnal rainfall corresponding to 1130, 1430, and 1730 Indian standard time (IST), from the north central to south bay. This finding could be seen to be consistent with southward propagation of the diurnal rainfall pattern reported by earlier studies. Over the Arabian Sea, there is a spatially coherent pattern in the mode of the peak octet (1430 IST), in a region where it rains for more than 30% of the time. In the equatorial Indian Ocean, while most of the western part shows a late night/early morning peak, the eastern part does not show a spatially coherent pattern in the mode of the peak octet owing to the occurrence of a ual maxima (early morng and early/late afternoon). The imalayan foothills were found to have a mode of peak octet corresponding to 0230 IST, whereas over the Burmese mountains and the Western Ghats (west coast of India) the rainfall peaks during late afternoon/early evening (1430-1730 IST). This implies that the phase of the diurnal cycle over inland orography (e. g., Himalayas) is significantly different from coastal orography (e. g., Western Ghats). We also find that over the Gangetic plains, the peak octet is around 1430 IST, a few hours earlier compared to the typical early evening maxima over land.
Resumo:
We report the natural history and behaviour of the primitively eusocial wasp Ropalidia marginata with a special reference to the males. We found that just as nests of this species are found throughout the year, so are the males. Females spend all their life in their nests but males stay in their natal nests only for 1-12 days and leave to lead a nomadic life. Males maintained in the laboratory can live for up to 140 days. Like all eusocial hymenopteran males, R. marginata males also do not perform any colony maintenance activities. We found that males did not forage or feed larvae. Compared with females, males showed fewer dominance and subordinate behaviours and being solicited behaviour and more feeding self and soliciting behaviours. By comparing males with young females, we found similar differences, except that the males showed similar rates of feeding self and higher rates of subordinate behaviour.
Resumo:
In meteorology, observations and forecasts of a wide range of phenomena for example, snow, clouds, hail, fog, and tornados can be categorical, that is, they can only have discrete values (e.g., "snow" and "no snow"). Concentrating on satellite-based snow and cloud analyses, this thesis explores methods that have been developed for evaluation of categorical products and analyses. Different algorithms for satellite products generate different results; sometimes the differences are subtle, sometimes all too visible. In addition to differences between algorithms, the satellite products are influenced by physical processes and conditions, such as diurnal and seasonal variation in solar radiation, topography, and land use. The analysis of satellite-based snow cover analyses from NOAA, NASA, and EUMETSAT, and snow analyses for numerical weather prediction models from FMI and ECMWF was complicated by the fact that we did not have the true knowledge of snow extent, and we were forced simply to measure the agreement between different products. The Sammon mapping, a multidimensional scaling method, was then used to visualize the differences between different products. The trustworthiness of the results for cloud analyses [EUMETSAT Meteorological Products Extraction Facility cloud mask (MPEF), together with the Nowcasting Satellite Application Facility (SAFNWC) cloud masks provided by Météo-France (SAFNWC/MSG) and the Swedish Meteorological and Hydrological Institute (SAFNWC/PPS)] compared with ceilometers of the Helsinki Testbed was estimated by constructing confidence intervals (CIs). Bootstrapping, a statistical resampling method, was used to construct CIs, especially in the presence of spatial and temporal correlation. The reference data for validation are constantly in short supply. In general, the needs of a particular project drive the requirements for evaluation, for example, for the accuracy and the timeliness of the particular data and methods. In this vein, we discuss tentatively how data provided by general public, e.g., photos shared on the Internet photo-sharing service Flickr, can be used as a new source for validation. Results show that they are of reasonable quality and their use for case studies can be warmly recommended. Last, the use of cluster analysis on meteorological in-situ measurements was explored. The Autoclass algorithm was used to construct compact representations of synoptic conditions of fog at Finnish airports.
Resumo:
Ripe fruit need to signal their presence to attract dispersal agents. Plants may employ visual and/or olfactory sensory channels to signal the presence of ripe fruit. Visual signals of ripe fruit have been extensively investigated. However, the volatile signatures of ripe fruit that use olfactorily-oriented dispersers have been scarcely investigated. Moreover, as in flowers, where floral scents are produced at times when pollinators are active (diurnal versus nocturnal), whether plants can modulate the olfactory signal to produce fruit odours when dispersers are active in the diel cycle is completely unknown. We investigated day night differences in fruit odours in two species of figs, Ficus racemosa and Ficus benghalensis. The volatile bouquet of fruit of F.racemosa that are largely dispersed by bats and other mammals was dominated by fatty acid derivatives such as esters. In this species in which the ripe fig phase is very short, and where the figs drop off soon after ripening, there were no differences between day and night in fruit volatile signature. The volatile bouquet of fruit of F. benghalensis that has a long ripening period, however, and that remain attached to the tree for extended periods when ripe, showed an increase in fatty acid derivatives such as esters and of benzenoids such as benzaldehyde at night when they are dispersed by bats, and an elevation of sesquiterpenes during the day when they are dispersed by birds. For the first time we provide data that suggest that the volatile signal produced by fruit can show did l differences based on the activity period of the dispersal agent. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Social insects are characterized by reproductive caste differentiation of colony members into one or a small number of fertile queens and a large number of sterile workers. The evolutionary origin and maintenance of such sterile workers remains an enduring puzzle in insect sociobiology. Here, we studied ovarian development in over 600 freshly eclosed, isolated, virgin female Ropalidia marginata wasps, maintained in the laboratory. The wasps differed greatly both in the time taken to develop their ovaries and in the magnitude of ovarian development despite having similar access to resources. All females started with no ovarian development at day zero, and the percentage of individuals with at least one oocyte at any stage of development increased gradually across age, reached 100% at 100. days and decreased slightly thereafter. Approximately 40% of the females failed to develop ovaries within the average ecological lifespan of the species. Age, body size and adult feeding rate, when considered together, were the most important factors governing ovarian development. We suggest that such flexibility and variation in the potential and timing of reproductive development may physiologically predispose females to accept worker roles and thus provide a gateway to worker ontogeny and the evolution of sociality.
Resumo:
Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.
Resumo:
Plants produce volatile organic compounds (VOCs) in a variety of contexts that include response to abiotic and biotic stresses, attraction of pollinators and parasitoids, and repulsion of herbivores. Some of these VOCs may also exhibit diel variation in emission. In Ficus racemosa, we examined variation in VOCs released by fig syconia throughout syconium development and between day and night. Syconia are globular enclosed inflorescences that serve as developing nurseries for pollinating and parasitic fig wasps. Syconia are attacked by gallers early in their development, serviced by pollinators in mid phase, and are attractive to parasitoids in response to the development of gallers at later stages. VOC bouquets of the different development phases of the syconium were distinctive, as were their day and night VOC profiles. VOCs such as alpha-muurolene were characteristic of the pollen-receptive diurnal phase, and may serve to attract the diurnally-active pollinating wasps. Diel patterns of release of volatiles could not be correlated with their predicted volatility as determined by Henry's law constants at ambient temperatures. Therefore, factors other than Henry's law constant such as stomatal conductance or VOC synthesis must explain diel variation in VOC emission. A novel use of weighted gene co-expression network analysis (WGCNA) on the volatilome resulted in seven distinct modules of co-emitted VOCs that could be interpreted on the basis of syconium ecology. Some modules were characterized by the response of fig syconia to early galling by parasitic wasps and consisted largely of green leaf volatiles (GLVs). Other modules, that could be characterized by a combination of syconia response to oviposition and tissue feeding by larvae of herbivorous galler pollinators as well as of parasitized wasps, consisted largely of putative herbivore-induced plant volatiles (HIPVs). We demonstrated the usefulness of WGCNA analysis of the volatilome in making sense of the scents produced by the syconia at different stages and diel phases of their development.
Resumo:
Daytime feeding behavior of humpback whales (Megaptera novaeangliae) in Gulf of the Farallones, California, and adjacent waters was observed during autumn of 1988 to 1990. Bodega Canyon, Cordell Bank, and the Farallon Islands were the primary sites of feeding activity. Fecal samples of whales and zooplankton tows contained euphausiids exclusively, dominated by Thysanoessa spinifera (79%), with lesser amounts of Euphausia pacifica (14%), Nyctiphanes simplex (4%), and Nematoscelis difficilis (3%). In 1988 and 1990, whales also were infrequently observed feeding on small schooling fish, presumably Pacific herring (Clupea pallasii), northern anchovy (Engraulis mordax), and juvenile rockfish (Sebastes spp.). Feeding was the most common behavior observed (52%), and less frequently traveling (23%), milling (21 %), and resting (4%). Whales used different methods to consume euphausiid prey at the surface (0-10 m), in shallow water (11-60 m), and deep water (61-140 m). Humpback whales fed at the surface 56% of time in 1988 and 32% of time in 1990, using primarily lateral lunges to capture swarms of euphausiids. In 1989, no surface feeding was observed; however, deep, long-duration dives were followed by extended surface intervals with many respirations. These 1989 observations coincided with increased prey depth as indicated by depth sounder records of diving whales and prey scattering layers. In 1989, increased prey depth and associated feeding behaviors were strongly associated with unusually high surface temperatures, calm seas, and changes in water circulation. Environmental conditions in 1989 triggered the most intense and wide-spread occurrence of red tide in this region since 1980. Red tide samples collected throughout this period contained Alexandrium (=Gonyaulax) catenella and Noctiluca scintillans. Surface feeding was observed only in 1988 and 1990, when surface prey were available and red tides were very limited in extent, duration, and intensity. Annual variations in humpback whale feeding behavior were related to prey availability which is affected by corresponding environmental conditions. (PDF contains 94 pages)
Resumo:
Estimating the abundance of marine macro-invertebrates is complicated by a variety of factors: 1) human factors, such as diver efficiency and diver error; and 2) biological factors, such as aggregation of organisms, crypsis, and nocturnal emergence behavior. Diver efficiency varied according to the detectability of an organism causing under-estimation of density by up to 50% in some species. All common species were aggregated at scales from 10-50 m. Transects need to be long enough to transcend the scale of patchiness to improve accuracy. Some species of sea urchins and sea cucumbers (pepinos) which are cryptic by day emerged at night so that daytime censuses underestimated their abundance by up to 10 times. In the sea cucumber fishery, estimates of abundance need to be made at the scale of the population, i.e. at hundreds of km. A strategy for this is proposed.
Resumo:
Humpback whales (Megaptera novaeangliae) are significant marine consumers. To examine the potential effect of predation by humpback whales, consumption (kg of prey daily) and prey removal (kg of prey annually) were modeled for a current and historic feeding aggregation of humpback whales off northeastern Kodiak Island, Alaska. A current prey biomass removal rate was modeled by using an estimate of the 2002 humpback whale abundance. A historic rate of removal was modeled from a prewhaling abundance estimate (population size prior to 1926). Two provisional humpback whale diets were simulated in order to model consumption rate. One diet was based on the stomach contents of whales that were commercially harvested from Port Hobron whaling station in Kodiak, Alaska, between 1926 and 1937, and the second diet, based on local prey availability as determined by fish surveys conducted within the study area, was used to model consumption rate by the historic population. The latter diet was also used to model consumption by the current population and to project a consumption rate if the current population were to grow to reach the historic population size. Models of these simulated diets showed that the current population likely removes nearly 8.83