818 resultados para distributed simulation pads anonymity tor simulator anonymous cloud computing
Resumo:
L'un des principaux défis de l'interprétation radiographique réside dans la compréhension de l’anatomie radiographique, laquelle est intrinsèquement liée à la disposition tridimensionnelle des structures anatomiques et à l’impact du positionnement du tube radiogène vis-à-vis de ces structures lors de l'acquisition de l'image. Traditionnellement, des radiographies obtenues selon des projections standard sont employées pour enseigner l'anatomie radiographique en médecine vétérinaire. La tomodensitométrie − ou communément appelée CT (Computed Tomography) − partage plusieurs des caractéristiques de la radiographie en ce qui a trait à la génération des images. À l’aide d'un plug-in spécialement développé (ORS Visual ©), la matrice contenant les images CT est déformée pour reproduire les effets géométriques propres au positionnement du tube et du détecteur vis-à-vis du patient radiographié, tout particulièrement les effets de magnification et de distorsion. Afin d'évaluer le rendu des images simulées, différentes régions corporelles ont été imagées au CT chez deux chiens, un chat et un cheval, avant d'être radiographiées suivant des protocoles d'examens standards. Pour valider le potentiel éducatif des simulations, dix radiologistes certifiés ont comparé à l'aveugle neuf séries d'images radiographiques simulées aux séries radiographiques standard. Plusieurs critères ont été évalués, soient le grade de visualisation des marqueurs anatomiques, le réalisme et la qualité radiographique des images, le positionnement du patient et le potentiel éducatif de celles-ci pour différents niveaux de formation vétérinaire. Les résultats généraux indiquent que les images radiographiques simulées à partir de ce modèle sont suffisamment représentatives de la réalité pour être employées dans l’enseignement de l’anatomie radiographique en médecine vétérinaire.
Resumo:
Where users are interacting in a distributed virtual environment, the actions of each user must be observed by peers with sufficient consistency and within a limited delay so as not to be detrimental to the interaction. The consistency control issue may be split into three parts: update control; consistent enactment and evolution of events; and causal consistency. The delay in the presentation of events, termed latency, is primarily dependent on the network propagation delay and the consistency control algorithms. The latency induced by the consistency control algorithm, in particular causal ordering, is proportional to the number of participants. This paper describes how the effect of network delays may be reduced and introduces a scalable solution that provides sufficient consistency control while minimising its effect on latency. The principles described have been developed at Reading over the past five years. Similar principles are now emerging in the simulation community through the HLA standard. This paper attempts to validate the suggested principles within the schema of distributed simulation and virtual environments and to compare and contrast with those described by the HLA definition documents.
Resumo:
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data and a data warehouse. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular we look at two aspects, first how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories --- this is an important and challenging aspect of P-found because the data volumes involved are too large to be centralised. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling new scientific discoveries.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform data mining and other analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data that is used to populate the second component, and a data warehouse that contains important molecular properties. These properties may be used for data mining studies. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular, we look at two aspects: firstly, how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories — this is an important and challenging aspect of P-found, due to the large data volumes involved and the desire of scientists to maintain control of their own data. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling scientific discovery.
Resumo:
Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.
Resumo:
A new model has been developed for assessing multiple sources of nitrogen in catchments. The model (INCA) is process based and uses reaction kinetic equations to simulate the principal mechanisms operating. The model allows for plant uptake, surface and sub-surface pathways and can simulate up to six land uses simultaneously. The model can be applied to catchment as a semi-distributed simulation and has an inbuilt multi-reach structure for river systems. Sources of nitrogen can be from atmospheric deposition, from the terrestrial environment (e.g. agriculture, leakage from forest systems etc.), from urban areas or from direct discharges via sewage or intensive farm units. The model is a daily simulation model and can provide information in the form of time series at key sites, or as profiles down river systems or as statistical distributions. The process model is described and in a companion paper the model is applied to the River Tywi catchment in South Wales and the Great Ouse in Bedfordshire.
Resumo:
The aim of this work was to design a set of rules for levodopa infusion dose adjustment in Parkinson’s disease based on a simulation experiments. Using this simulator, optimal infusions dose in different conditions were calculated. There are seven conditions (-3 to +3)appearing in a rating scale for Parkinson’s disease patients. By finding mean of the differences between conditions and optimal dose, two sets of rules were designed. The set of rules was optimized by several testing. Usefulness for optimizing the titration procedure of new infusion patients based on rule-based reasoning was investigated. Results show that both of the number of the steps and the errors for finding optimal dose was shorten by new rules. At last, the dose predicted with new rules well on each single occasion of majority of patients in simulation experiments.
Resumo:
This paper presents an improved and updated taxonomy for Time Warp based distributed synchronization protocols. This taxonomy aims to allow the grouping of several optmistic distributed simulation synchronization protocols, with the objective to facilitate the task to decide which protocol is better for a specific simulation.
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Focusing of four hemoglobins with concurrent electrophoretic mobilization was studied by computer simulation. A dynamic electrophoresis simulator was first used to provide a detailed description of focusing in a 100-carrier component, pH 6-8 gradient using phosphoric acid as anolyte and NaOH as catholyte. These results are compared to an identical simulation except that the catholyte contained both NaOH and NaCl. A stationary, steady-state distribution of carrier components and hemoglobins is produced in the first configuration. In the second, the chloride ion migrates into and through the separation space. It is shown that even under these conditions of chloride ion flux a pH gradient forms. All amphoteric species acquire a slight positive charge upon focusing and the whole pattern is mobilized towards the cathode. The cathodic gradient end is stable whereas the anodic end is gradually degrading due to the continuous accumulation of chloride. The data illustrate that the mobilization is a cationic isotachophoretic process with the sodium ion being the leading cation. The peak height of the hemoglobin zones decreases somewhat upon mobilization, but the zones retain a relatively sharp profile, thus facilitating detection. The electropherograms that would be produced by whole column imaging and by a single detector placed at different locations along the focusing column are presented and show that focusing can be commenced with NaCl present in the catholyte at the beginning of the experiment. However, this may require detector placement on the cathodic side of the catholyte/sample mixture interface.
Resumo:
Content Distribution Networks are mandatory components of modern web architectures, with plenty of vendors offering their services. Despite its maturity, new paradigms and architecture models are still being developed in this area. Cloud Computing, on the other hand, is a more recent concept which has expanded extremely quickly, with new services being regularly added to cloud management software suites such as OpenStack. The main contribution of this paper is the architecture and the development of an open source CDN that can be provisioned in an on-demand, pay-as-you-go model thereby enabling the CDN as a Service paradigm. We describe our experience with integration of CDNaaS framework in a cloud environment, as a service for enterprise users. We emphasize the flexibility and elasticity of such a model, with each CDN instance being delivered on-demand and associated to personalized caching policies as well as an optimized choice of Points of Presence based on exact requirements of an enterprise customer. Our development is based on the framework developed in the Mobile Cloud Networking EU FP7 project, which offers its enterprise users a common framework to instantiate and control services. CDNaaS is one of the core support components in this project as is tasked to deliver different type of multimedia content to several thousands of users geographically distributed. It integrates seamlessly in the MCN service life-cycle and as such enjoys all benefits of a common design environment, allowing for an improved interoperability with the rest of the services within the MCN ecosystem.
Resumo:
Over the last decade, Grid computing paved the way for a new level of large scale distributed systems. This infrastructure made it possible to securely and reliably take advantage of widely separated computational resources that are part of several different organizations. Resources can be incorporated to the Grid, building a theoretical virtual supercomputer. In time, cloud computing emerged as a new type of large scale distributed system, inheriting and expanding the expertise and knowledge that have been obtained so far. Some of the main characteristics of Grids naturally evolved into clouds, others were modified and adapted and others were simply discarded or postponed. Regardless of these technical specifics, both Grids and clouds together can be considered as one of the most important advances in large scale distributed computing of the past ten years; however, this step in distributed computing has came along with a completely new level of complexity. Grid and cloud management mechanisms play a key role, and correct analysis and understanding of the system behavior are needed. Large scale distributed systems must be able to self-manage, incorporating autonomic features capable of controlling and optimizing all resources and services. Traditional distributed computing management mechanisms analyze each resource separately and adjust specific parameters of each one of them. When trying to adapt the same procedures to Grid and cloud computing, the vast complexity of these systems can make this task extremely complicated. But large scale distributed systems complexity could only be a matter of perspective. It could be possible to understand the Grid or cloud behavior as a single entity, instead of a set of resources. This abstraction could provide a different understanding of the system, describing large scale behavior and global events that probably would not be detected analyzing each resource separately. In this work we define a theoretical framework that combines both ideas, multiple resources and single entity, to develop large scale distributed systems management techniques aimed at system performance optimization, increased dependability and Quality of Service (QoS). The resulting synergy could be the key 350 J. Montes et al. to address the most important difficulties of Grid and cloud management.