982 resultados para developmental stage
Resumo:
Lo scopo del progetto triennale del dottorato di ricerca è lo studio delle alterazioni genetiche in un gruppo di pazienti affetti da micosi fungoide ed un gruppo di pazienti affetti da sindrome di Sezary. Dalle biopsie cutanee è stato estratto il DNA e analizzato, comparandolo con DNA sano di riferimento, utilizzando la tecnica array-CGH, allo scopo di identificare la presenza di geni potenzialmente implicati nel processo di oncogenesi. Questa analisi è stata eseguita, per ogni paziente, su biopsie effettuate ad una fase iniziale di malattia e ad una fase di progressione della stessa. Sugli stessi pazienti è stata inoltre eseguita un’analisi miRNA. Si ipotizza che il profilo d’espressione dei miRNA possa infatti dare informazioni utili per predire lo stato di malattia, il decorso clinico, la progressione tumorale e la riposta terapeutica. Questo lavoro è stato poi eseguito su biopsie effettuate in pazienti affetti da sindrome di Sezary che, quando non insorge primitivamente come tale, si può considerare una fase evolutiva della micosi fungoide. La valutazione delle alterazioni genetiche, ed in particolare la correlazione esistente tra duplicazione e delezione genetica e sovra/sottoespressione genetica, è stata possibile attraverso l’interpretazione e la comparazione dei dati ottenuti attraverso le tecniche array-CGH e miRNA. Sono stati comparati i risultati ottenuti per valutare quali fossero le alterazioni cromosomiche riscontrate nei diversi stadi di malattia. L’applicazione dell’array-CGH e della metodica di analisi mi-RNA si sono rivelate molto utili per l’identificazione delle diverse aberrazioni cromosomiche presenti nel genoma dei pazienti affetti da micosi fungoide e sindrome di Sezary, per valutare la prognosi del paziente e per cercare di migliorare o trovare nuove linee terapeutiche per il trattamento delle due patologie. Lo studio di questi profili può rappresentare quindi uno strumento di grande importanza nella classificazione e nella diagnosi dei tumori.
Resumo:
PURPOSE: Maxillofacial and skull fractures occur with concomitant injuries in pediatric trauma patients. The aim of this study was to determine the causes and distributions of maxillofacial and skull fractures as well as concomitant injuries of pediatric patients in Switzerland. Results were compared with worldwide studies. MATERIALS AND METHODS: A retrospective review was conducted of 291 pediatric patients with maxillofacial and skull fractures presenting to a level-I trauma center over a 3-year span. Data concerning the mechanism of the accident and the topographic location of the injuries were analyzed. RESULTS: The most common causes were falls (64%), followed by traffic (22%) and sports-related accidents (9%). Fifty-four percent of the fractures occurred in the skull vault and 37% in the upper and middle facial third. One third of the patients (n = 95) suffered concomitant injuries, mostly cerebral concussions (n = 94). CONCLUSIONS: The spectrum of craniofacial injuries is related to the specific developmental stage of the craniofacial skeleton. It is probable that national prevention programs will have a positive effect on reducing the incidence of falls. Standardization of studies is needed for international comparison.
Resumo:
MicroRNAs (miRNAs) constitute a growing class of non-coding RNAs that are thought to regulate gene expression by translational repression. Several miRNAs in animals exhibit tissue-specific or developmental-stage-specific expression, indicating that they could play important roles in many biological processes. To study the role of miRNAs in pancreatic endocrine cells we cloned and identified a novel, evolutionarily conserved and islet-specific miRNA (miR-375). Here we show that overexpression of miR-375 suppressed glucose-induced insulin secretion, and conversely, inhibition of endogenous miR-375 function enhanced insulin secretion. The mechanism by which secretion is modified by miR-375 is independent of changes in glucose metabolism or intracellular Ca2+-signalling but correlated with a direct effect on insulin exocytosis. Myotrophin (Mtpn) was predicted to be and validated as a target of miR-375. Inhibition of Mtpn by small interfering (si)RNA mimicked the effects of miR-375 on glucose-stimulated insulin secretion and exocytosis. Thus, miR-375 is a regulator of insulin secretion and may thereby constitute a novel pharmacological target for the treatment of diabetes.
Resumo:
The procyclic form of Trypanosoma brucei colonises the gut of its insect vector, the tsetse fly. GPEET and EP procyclins constitute the parasite's surface coat at this stage of the life cycle, and the presence or absence of GPEET distinguishes between early and late procyclic forms, respectively. Differentiation from early to late procyclic forms in vivo occurs in the fly midgut and can be mimicked in culture. Our analysis of this transition in vitro delivered new insights into the process of GPEET repression. First, we could show that parasites followed a concrete sequence of events upon triggering differentiation: after undergoing an initial growth arrest, cells lost GPEET protein, and finally late procyclic forms resumed proliferation. Second, we determined the stability of both GPEET and EP mRNA during differentiation. GPEET mRNA is exceptionally stable in early procyclic forms, with a half-life >6h. The GPEET mRNA detected in late procyclic form cultures is a mixture of transcripts from both bona fide late procyclic forms and GPEET-positive 'laggard' parasites present in these cultures. However, its stability was clearly reduced during differentiation and in late procyclic form cultures. Alternatively processed GPEET transcripts were enriched in samples from late procyclic forms, suggesting that altered mRNA processing might contribute to repression of GPEET in this developmental stage. In addition, we detected GPEET transcripts with non-templated oligo(U) tails that were enriched in late procyclic forms. To the best of our knowledge, this is the first study reporting a uridylyl-tailed, nuclear-encoded mRNA species in trypanosomatids or any other protozoa.
Resumo:
Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. in order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.
Resumo:
In 1846, T. Wharton-Jones described a coarsely granular stage in the development of granulocytic cells in animal and human blood. Shortly thereafter, Max Schultze redefined the coarsely granular cells as a type distinct from finely granular cells, rather than just a developmental stage. It was, however, not until 1879, when Paul Ehrlich introduced a method to distinguish granular cells by the staining properties of their granules, that a classification became possible. An intensive staining for eosin, among other aniline dyes, was eponymous for the coarsely granular cell type, which thereupon became referred to as eosinophil granulocyte. Eosinophilia had already been described in many diseases by the late 19th century. The role of these cells, however, today remains a matter of continuing speculation and investigation. Many functions have been attributed to the eosinophil over the years, often linked to increasing knowledge about the granular and cytoplasmatic contents. A better understanding of the regulatory mechanisms of eosinopoiesis has led to the development of knock-out mice strains as well as therapeutic strategies for reducing the eosinophil load in patients. The effect of these therapeutics and the characterization of the knock-out phenotypes have led to a great increase in the knowledge of the role of the eosinophil in disease. Today we think of the eosinophil as a multifunctional cell involved in host defense, tissue damage and remodeling, as well as immunomodulation.
Resumo:
AIM To identify the ideal timing of first permanent molar extraction to reduce the future need for orthodontic treatment. MATERIALS AND METHODS A computerised database and subsequent manual search was performed using Medline database, Embase and Ovid, covering the period from January 1946 to February 2013. Two reviewers (JE and ME) extracted the data independently and evaluated if the studies matched the inclusion criteria. Inclusion criteria were specification of the follow-up with clinical examination or analysis of models, specification of the chronological age or dental developmental stage at the time of extraction, no treatment in between, classification of the treatment result into perfect, good, average and poor. The search was limited to human studies and no language limitations were set. RESULTS The search strategy resulted in 18 full-text articles, of which 6 met the inclusion criteria. By pooling the data from maxillary sites, good to perfect clinical outcome was estimated in 72% (95% confidence interval 63%-82%). Extractions at the age of 8-10.5 years tended to show better spontaneous clinical outcomes compared to the other age groups. By pooling the data from mandibular sites, extractions performed at the age of 8-10.5 and 10.5-11.5 years showed significantly superior spontaneous clinical outcome with a probability of 50% and 59% likelihood, respectively, to achieve good to perfect clinical result (p<0.05) compared to the other age groups (<8 years of age: 34%, >11.5 years of age: 44%). CONCLUSION Prevention of complications after first permanent molars extractions is an important issue. The overall success rate of spontaneous clinical outcome for maxillary extraction of first permanent molars was superior to mandibular extraction. Extractions of mandibular first permanent molars should be performed between 8 and 11.5 years of age in order to achieve a good spontaneous clinical outcome. For the extraction in the maxilla, no firm conclusions concerning the ideal extraction timing could be drawn.
Resumo:
Recently, it has been shown that water fluxes across biological membranes occur not only through the lipid bilayer but also through specialized water-conducting proteins, the so called aquaporins. In the present study, we investigated in young and mature leaves of Brassica napus L. the expression and localization of a vacuolar aquaporin homologous to radish γ-tonoplast intrinsic protein/vacuolar-membrane integral protein of 23 kDa (TIP/VM 23). In-situ hybridization showed that these tonoplast aquaporins are highly expressed not only in developing but also in mature leaves, which export photosynthates. No substantial differences could be observed between different tissues of young and mature leaves. However, independent of the developmental stage, an immunohistochemical approach revealed that the vacuolar membrane of bundle-sheath cells contained more protein cross-reacting with antibodies raised against radish γ-TIP/VM 23 than the mesophyll cells. The lowest labeling was detected in phloem cells. We compared these results with the distribution of plasma-membrane aquaporins cross-reacting with antibodies detecting a domain conserved among members of the plasma-membrane intrinsic protein 1 (PIP1) subfamily. We observed the same picture as for the vacuolar aquaporins. Furthermore, a high density of gold particles labeling proteins of the PIP1 group could be observed in plasmalemmasomes of the vascular parenchyma. Our results indicate that γ-TIP/VM 23 and PIP1 homologous proteins show a similar expression pattern. Based on these results it is tempting to speculate that bundle-sheath cells play an important role in facilitating water fluxes between the apoplastic and symplastic compartments in close proximity to the vascular tissue.
Resumo:
Our national focus and emphasis on the promotion of healthy behavior choices regarding tobacco and other drugs continues to target adolescents. Multiple studies have shown that adolescence is the optimum period for the prevention of substance use initiation as life-long patterns of health behaviors are established during this critical developmental stage. Tobacco use is associated with an increase in morbid and mortal health conditions of which prevalence increases throughout the lifespan. Attention to the antecedents of preventable health conditions aims to modify the risks and identify health promotion factors. Modifying antecedent factors for tobacco initiation in youth and identifying protective factors for successful smoking cessation has major public health implications across the lifespan. Of foremost interest are those risk factors and resultant behaviors that predict a youth's probability of initiating cigarette use and their cessation of cigarette use. Specifically, this dissertation supports previous results identifying intervention variables on the initiation/cessation continuum model especially with the established predictors of smoking (decisional balance and susceptibility) and with more recently identified predictors of smoking (nicotine dependence and withdrawal symptoms) in current and former smokers in a sample of high school students in Austin and Houston, Texas. These results offer insight for the development of appropriate intervention program strategies for our youth. ^
Resumo:
Effective activation of a recipient oocyte and its compatibility with the nuclear donor are critical to the successful nuclear reprogramming during nuclear transfer. We designed a series of experiments using various activation methods to determine the optimum activation efficiency of bovine oocytes. We then performed nuclear transfer (NT) of embryonic and somatic cells into cytoplasts presumably at G1/S phase (with prior activation) or at metaphase II (MII, without prior activation). Oocytes at 24 hr of maturation in vitro were activated with various combinations of calcium ionophore A23187 (A187) (5 microM, 5 min), electric pulse (EP), ethanol (7%, 7 min), cycloheximide (CHX) (10 micro g/ml, 6 hr), and then cultured in cytochalasin D (CD) for a total of 18 hr. Through a series of experiments (Exp. 1-4), an improved activation protocol (A187/EP/CHX/CD) was identified and used for comparison of NT efficiency of embryonic versus somatic donor cells (Exp. 5). When embryonic cells from morula and blastocysts (BL) were used as nuclear donors, a significantly higher rate of blastocyst development from cloned embryos was obtained with G1/S phase cytoplasts than with MII-phase cytoplasts (36 vs. 11%, P < 0.05). In contrast, when skin fibroblasts were used as donor cells, the use of an MII cytoplast (vs. G1/S phase) was imperative for blastocyst development (30 vs. 6%, P < 0.05). Differential staining showed that parthenogenetic, embryonic, and somatic cloned BL contained 26, 29, and 33% presumptive inner cell mass (ICM) cells, respectively, which is similar to that of frozen-thawed in vivo embryos at a comparable developmental stage (23%). These data indicate that embryonic and somatic nuclei require different recipient cytoplast environment for remodeling/ reprogramming, and this is likely due to the different cell cycle stage and profiles of molecular differentiation of the transferred donor nuclei.
Resumo:
Prominent challenges facing nurse leaders are the growing shortage of nurses and the increasingly complex care required by acutely ill patients. In organizations that shortage is exacerbated by turnover and intent to leave. Unsatisfactory working conditions are cited by nurses when they leave their current jobs. Disengagement from the job leads to plateaued performance, decreased organizational commitment, and increased turnover. Solutions to these challenges include methods both to retain and to increase the effectiveness of each nurse. ^ The specific aim of this study was to examine the relationships among organizational structures thought to foster the clinical development of the nurse, with indicators of the development of clinical expertise, resulting in outcomes of positive job attitudes and effectiveness. Causal loop modeling is incorporated as a systems tool to examine developmental cycles both for an organization and for an individual nurse to look beyond singular events and investigate deeper patterns that emerge over time. ^ The setting is an academic specialty-care institution, and the sample in this cross-sectional study consists of paired data from 225 RNs and their nurse managers. Two panels of survey instruments were created based on the model's theoretical variables, one completed by RNs and the other by their Nurse Managers. The RN survey panel examined the variables of structural empowerment, magnet essentials, knowledge as identified by the Benner developmental stage, psychological empowerment, job stage, engagement, intent to leave, job satisfaction and the early recognition of patient complications. The nurse manager survey panel examined the Benner developmental stage, job stage, and overall level of nursing performance. ^ Four regression models were created based on the outcome variables. Each model identified significant organizational and individual characteristics that predicted higher job satisfaction, decreased intent to leave, more effectiveness as measured by early recognition and acting upon subtle patient complications, and better job performance. ^ Implications for improving job attitudes and effectiveness focus on ways that nursing leaders can foster a more empowering and healthy work environment. ^
Resumo:
Histone acetyltransferases are important chromatin modifiers that function as transcriptional co-activators. The identification of the transcriptional regulator GCN5 as the first nuclear histone acetyltransferase in yeast directly linked chromatin remodeling to transcriptional regulation. Although emerging evidence suggests that acetyltransferases participate in multiple cellular processes, their roles in mammalian development remain undefined. In this study, I have cloned and characterized the mouse homolog of GCN5 and a closely related protein P/CAF that interacts with p300/CBP. In contrast to yeast GCN5, but similar to P/CAF, mouse GCN5 possesses an additional N-terminal domain that confers the ability to acetylate nucleosomal histones. GCN5 and P/CAF exhibit identical substrate specificity and both interact with p300/CBP. Interestingly, expression levels of GCN5 and P/CAF display a complementary pattern in mouse embryos and in adult tissues, suggesting that they have distinct tissue or developmental stage specific roles. To define the in vivo function of GCN5 and P/CAF, I have generated mice that are nullizygous for GCN5 or P/CAF. P/CAF null mice are viable and fertile with no gross morphological defects, indicating that P/CAF is dispensable for development and p300/CBP function in vivo. In contrast, mice lacking GCN5 die between 10.5–11 days of gestation. GCN5 null mice are severely retarded but have anterior ectopic outgrowth. Molecular marker analyses reveal that early mesoderm is formed in GCN5 null mice but further differentiation into distinct mesodermal lineages is perturbed. While presomitic mesoderm and chodamesoderm are missing in GCN5 mutant mice, extraembryonic tissues and lateral mesoderm are unaffected. This is consistent with our finding that GCN5 expression is absent in the heart and extraembryonic tissues but is uniform throughout the rest of the embryo. Remarkably, GCN5 mutant mice exhibit an unusually high incidence of apoptosis in the embryonic ectoderm and mesoderm. Finally, mice doubly null for GCN5 and P/CAF die much earlier than mice harboring the GCN5 mutation alone, suggesting that P/CAF and GCN5 share some overlapping function during embryogenesis. This work is the first study to show that specific acetyltransferase is important for cell survival as well as mesoderm differentiation or maintenance during early mammalian development. ^
Resumo:
Distribution, density, and feeding dynamics of the pelagic tunicate Salpa thompsoni have been investigated during the expedition ANTARKTIS XVIII/5b to the Eastern Bellingshausen Sea on board RV Polarstern in April 2001. This expedition was the German contribution to the field campaign of the Southern Ocean Global Ocean Ecosystems Dynamics Study (SO-GLOBEC). Salps were found at 31% of all RMT-8 and Bongo stations. Their densities in the RMT-8 samples were low and did not exceed 4.8 ind/m**2 and 7.4 mg C/m**2. However, maximum salp densities sampled with the Bongo net reached 56 ind/m**2 and 341 mg C/m**2. A bimodal salp length frequency distribution was recorded over the shelf, and suggested two recent budding events. This was also confirmed by the developmental stage composition of solitary forms. Ingestion rates of aggregate forms increased from 2.8 to 13.9 µg (pig)/ind/day or from 0.25 to 2.38 mg C/ind/day in salps from 10 to 40 mm oral-atrial length, accounting for 25-75% of body carbon per day. Faecal pellet production rates were on average 0.08 pellet/ind/h with a pronounced diel pattern. Daily individual egestion rates in 13 and 30 mm aggregates ranged from 0.6 to 4.8 µg (pig)/day or from 164 to 239 µg C/day. Assimilation efficiency ranged from 73 to 90% and from 65 to 76% in 13 and 30 mm aggregates, respectively. S. thompsoni exhibited similar ingestion and egestion rates previously estimated for low Antarctic (~50°S) habitats. It has been suggested that the salp population was able to develop in the Eastern Bellingshausen Sea due to an intrusion into the area of the warm Upper Circumpolar Deep Water
Resumo:
Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics.
Resumo:
Over broad thermal gradients, the effect of temperature on aerobic respiration and photosynthesis rates explains variation in community structure and function. Yet for local communities, temperature dependent trophic interactions may dominate effects of warming. We tested the hypothesis that food chain length modifies the temperature-dependence of ecosystem fluxes and community structure. In a multi-generation aquatic food web experiment, increasing temperature strengthened a trophic cascade, altering the effect of temperature on estimated mass-corrected ecosystem fluxes. Compared to consumer-free and 3-level food chains, grazer-algae (2-level) food chains responded most strongly to the temperature gradient. Temperature altered community structure, shifting species composition and reducing zooplankton density and body size. Still, food chain length did not alter the temperature dependence of net ecosystem fluxes. We conclude that locally, food chain length interacts with temperature to modify community structure, but only temperature, not food chain length influenced net ecosystem fluxes.