813 resultados para demographic categories
Resumo:
Most studies of conceptual knowledge in the brain focus on a narrow range of concrete conceptual categories, rely on the researchers' intuitions about which object belongs to these categories, and assume a broadly taxonomic organization of knowledge. In this fMRI study, we focus on concepts with a variety of concreteness levels; we use a state of the art lexical resource (WordNet 3.1) as the source for a relatively large number of category distinctions and compare a taxonomic style of organization with a domain-based model (associating concepts with scenarios). Participants mentally simulated situations associated with concepts when cued by text stimuli. Using multivariate pattern analysis, we find evidence that all Taxonomic categories and Domains can be distinguished from fMRI data and also observe a clear concreteness effect: Tools and Locations can be reliably predicted for unseen participants, but less concrete categories (e.g., Attributes, Communications, Events, Social Roles) can only be reliably discriminated within participants. A second concreteness effect relates to the interaction of Domain and Taxonomic category membership: Domain (e.g., relation to Law vs. Music) can be better predicted for less concrete categories. We repeated the analysis within anatomical regions, observing discrimination between all/most categories in the left middle occipital and temporal gyri, and more specialized discrimination for concrete categories Tool and Location in the left precentral and fusiform gyri, respectively. Highly concrete/abstract Taxonomic categories and Domain were segregated in frontal regions. We conclude that both Taxonomic and Domain class distinctions are relevant for interpreting neural structuring of concrete and abstract concepts.
Resumo:
One of the most useful methods for studying the stable homotopy category is localising at some spectrum E. For an arbitrary stable model category we introduce a candidate for the E–localisation of this model category. We study the properties of this new construction and relate it to some well–known categories.
Resumo:
Associations between socio-demographic and psychological factors and food choice patterns were explored in unemployed young people who constitute a vulnerable group at risk of poor dietary health. Volunteers (N = 168), male (n = 97) and female (n = 71), aged 15–25 years were recruited through United Kingdom (UK) community-based organisations serving young people not in education training or employment (NEET). Survey questionnaire enquired on food poverty, physical activity and measured responses to the Food Involvement Scale (FIS), Food Self-Efficacy Scale (FSS) and a 19-item Food Frequency Questionnaire (FFQ). A path analysis was undertaken to explore associations between age, gender, food poverty, age at leaving school, food self-efficacy (FS-E), food involvement (FI) (kitchen; uninvolved; enjoyment), physical activity and the four food choice patterns (junk food; healthy; fast food; high fat). FS-E was strong in the model and increased with age. FS-E was positively associated with more
frequent choice of healthy food and less frequent junk or high fat food (having controlled for age, gender and age at leaving school). FI (kitchen and enjoyment) increased with age. Higher FI (kitchen) was associated with less frequent junk food and fast food choice. Being uninvolved with food was associated with
more frequent fast food choice. Those who left school after the age of 16 years reported more frequent physical activity. Of the indirect effects, younger individuals had lower FI (kitchen) which led to frequent junk and fast food choice. Females who were older had higher FI (enjoyment) which led to less frequent fast food choice. Those who had left school before the age of 16 had low food involvement (uninvolved) which led to frequent junk food choice. Multiple indices implied that data were a good fit to the model which indicated a need to enhance food self-efficacy and encourage food involvement in order to improve dietary health among these disadvantaged young people.
Resumo:
Based on models with calibrated parameters for infection, case fatality rates, and vaccine efficacy, basic childhood vaccinations have been estimated to be highly cost effective. We estimate the association of vaccination with mortality directly from survey data. Using 149 cross-sectional Demographic and Health Surveys, we determine the relationship between vaccination coverage and under five mortality at the survey cluster level. Our data include approximately one million children in 68,490 clusters in 62 countries. We consider the childhood measles, Bacille Calmette-Guérin (BCG), Diphtheria-Pertussis-Tetanus (DPT), Polio, and maternal tetanus vaccinations. Using modified Poisson regression to estimate the relative risk of child mortality in each cluster, we also adjust for selection bias caused by the vaccination status of dead children not being reported. Childhood vaccination, and in particular measles and tetanus vaccination, is associated with substantial reductions in childhood mortality. We estimate that children in clusters with complete vaccination coverage have relative risk of mortality 0.73 (95% Confidence Interval: 0.68, 0.77) that of children in a cluster with no vaccination. While widely used, basic vaccines still have coverage rates well below 100% in many countries, and our results emphasize the effectiveness of increasing their coverage rates in order to reduce child mortality.
Resumo:
Background/Question/Methods
Assessing the large scale impact of deer populations on forest structure and composition is important because of their increasing abundance in many temperate forests. Deer are invasive animals and sometimes thought to be responsible for immense damage to New Zealand’s forests. We report demographic changes taking place among 40 widespread indigenous tree species over 20 years, following a period of record deer numbers in the 1950s and a period of extensive hunting and depletion of deer populations during the 1960s and 1970s.
Results/Conclusions
Across a network of 578 plots there was an overall 13% reduction in sapling density of our study species with most remaining constant and a few declining dramatically. The effect of suppressed recruitment when deer populations were high was evident in the small tree size class (30 – 80 mm dbh). Stem density decreased by 15% and species with the greatest annual decreases in small tree density were those which have the highest rates of sapling recovery in exclosures indicating that deer were responsible. Densities of large canopy trees have remained relatively stable. There were imbalances between mortality and recruitment rates for 23 of the 40 species, 7 increasing and 16 in decline. These changes were again linked with sapling recovery in exclosures; species which recovered most rapidly following deer exclusion had the greatest net recruitment deficit across the wider landscape, indicating recruitment suppression by deer as opposed to mortality induced by disturbance and other herbivores. Species are not declining uniformly across all populations and no species are in decline across their entire range. Therefore we predict that with continued deer presence some forests will undergo compositional changes but that none of the species tested will become nationally extinct.
Impacts of invasive browsers on demographic rates and forest structure in New Zealand. Available from: http://www.researchgate.net/publication/267285500_Impacts_of_invasive_browsers_on_demographic_rates_and_forest_structure_in_New_Zealand [accessed Oct 9, 2015].
Adjusting HIV Prevalence Estimates for Non-participation: an Application to Demographic Surveillance
Resumo:
Introduction: HIV testing is a cornerstone of efforts to combat the HIV epidemic, and testing conducted as part of surveillance provides invaluable data on the spread of infection and the effectiveness of campaigns to reduce the transmission of HIV. However, participation in HIV testing can be low, and if respondents systematically select not to be tested because they know or suspect they are HIV positive (and fear disclosure), standard approaches to deal with missing data will fail to remove selection bias. We implemented Heckman-type selection models, which can be used to adjust for missing data that are not missing at random, and established the extent of selection bias in a population-based HIV survey in an HIV hyperendemic community in rural South Africa.
Methods: We used data from a population-based HIV survey carried out in 2009 in rural KwaZulu-Natal, South Africa. In this survey, 5565 women (35%) and 2567 men (27%) provided blood for an HIV test. We accounted for missing data using interviewer identity as a selection variable which predicted consent to HIV testing but was unlikely to be independently associated with HIV status. Our approach involved using this selection variable to examine the HIV status of residents who would ordinarily refuse to test, except that they were allocated a persuasive interviewer. Our copula model allows for flexibility when modelling the dependence structure between HIV survey participation and HIV status.
Results: For women, our selection model generated an HIV prevalence estimate of 33% (95% CI 27–40) for all people eligible to consent to HIV testing in the survey. This estimate is higher than the estimate of 24% generated when only information from respondents who participated in testing is used in the analysis, and the estimate of 27% when imputation analysis is used to predict missing data on HIV status. For men, we found an HIV prevalence of 25% (95% CI 15–35) using the selection model, compared to 16% among those who participated in testing, and 18% estimated with imputation. We provide new confidence intervals that correct for the fact that the relationship between testing and HIV status is unknown and requires estimation.
Conclusions: We confirm the feasibility and value of adopting selection models to account for missing data in population-based HIV surveys and surveillance systems. Elements of survey design, such as interviewer identity, present the opportunity to adopt this approach in routine applications. Where non-participation is high, true confidence intervals are much wider than those generated by standard approaches to dealing with missing data suggest.
Resumo:
Predicting the next location of a user based on their previous visiting pattern is one of the primary tasks over data from location based social networks (LBSNs) such as Foursquare. Many different aspects of these so-called “check-in” profiles of a user have been made use of in this task, including spatial and temporal information of check-ins as well as the social network information of the user. Building more sophisticated prediction models by enriching these check-in data by combining them with information from other sources is challenging due to the limited data that these LBSNs expose due to privacy concerns. In this paper, we propose a framework to use the location data from LBSNs, combine it with the data from maps for associating a set of venue categories with these locations. For example, if the user is found to be checking in at a mall that has cafes, cinemas and restaurants according to the map, all these information is associated. This category information is then leveraged to predict the next checkin location by the user. Our experiments with publicly available check-in dataset show that this approach improves on the state-of-the-art methods for location prediction.