814 resultados para decision support techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty contributes a major part in the accuracy of a decision-making process while its inconsistency is always difficult to be solved by existing decision-making tools. Entropy has been proved to be useful to evaluate the inconsistency of uncertainty among different respondents. The study demonstrates an entropy-based financial decision support system called e-FDSS. This integrated system provides decision support to evaluate attributes (funding options and multiple risks) available in projects. Fuzzy logic theory is included in the system to deal with the qualitative aspect of these options and risks. An adaptive genetic algorithm (AGA) is also employed to solve the decision algorithm in the system in order to provide optimal and consistent rates to these attributes. Seven simplified and parallel projects from a Hong Kong construction small and medium enterprise (SME) were assessed to evaluate the system. The result shows that the system calculates risk adjusted discount rates (RADR) of projects in an objective way. These rates discount project cash flow impartially. Inconsistency of uncertainty is also successfully evaluated by the use of the entropy method. Finally, the system identifies the favourable funding options that are managed by a scheme called SME Loan Guarantee Scheme (SGS). Based on these results, resource allocation could then be optimized and the best time to start a new project could also be identified throughout the overall project life cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study was carried out as part of a European Union funded project (PharmDIS-e+), to develop and evaluate software aimed at assisting physicians with drug dosing. A drug that causes particular problems with drug dosing in primary care is digoxin because of its narrow therapeutic range and low therapeutic index. Objectives: To determine (i) accuracy of the PharmDIS-e+ software for predicting serum digoxin levels in patients who are taking this drug regularly; (ii) whether there are statistically significant differences between predicted digoxin levels and those measured by a laboratory and (iii) whether there are differences between doses prescribed by general practitioners and those suggested by the program. Methods: We needed 45 patients to have 95% Power to reject the null hypothesis that the mean serum digoxin concentration was within 10% of the mean predicted digoxin concentration. Patients were recruited from two general practices and had been taking digoxin for at least 4 months. Exclusion criteria were dementia, low adherence to digoxin and use of other medications known to interact to a clinically important extent with digoxin. Results: Forty-five patients were recruited. There was a correlation of 0·65 between measured and predicted digoxin concentrations (P < 0·001). The mean difference was 0·12 μg/L (SD 0·26; 95% CI 0·04, 0·19, P = 0·005). Forty-seven per cent of the patients were prescribed the same dose as recommended by the software, 44% were prescribed a higher dose and 9% a lower dose than recommended. Conclusion: PharmDIS-e+ software was able to predict serum digoxin levels with acceptable accuracy in most patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.