874 resultados para decision support systems, GIS, interpolation, multiple regression
Resumo:
Collaborative Work plays an important role in today’s organizations, especially in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself complex, but is becoming recurrent in recent years. In this work we present the VirtualECare project, an intelligent multi-agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In last year’s there has been a substantially increase on the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is becoming not exclusive of the elderly, as diseases like obesity, diabetes and blood pressure have been increasing among young adults. This is a new reality that needs to be dealt by the health sector, particularly by the public one. Given this scenarios, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when we believe they should not to be removed from their natural “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have also assisted to a growing interest in combining the advances in information society - computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results.
Resumo:
O processo de negociação tem ganho relevância como uma das formas de gestão de conflitos. Verifica-se que nas organizações a negociação é um processo omnipresente, que tem sido alvo de muito estudo e investigação, e as capacidades de negociação são consideradas determinantes para o sucesso. Em consequência dessas tendências, surgem propostas de modelos de negociação bastantes flexíveis e que visam colaboração entre as partes interessadas, modelos que se adequam aos contextos organizacionais em que predominam relações estáveis e de longo prazo. Estas propostas procuram a solução óptima para as partes interessadas. No entanto, faltam frequentemente os mecanismos e procedimentos que garantam um processo estruturado para elaborar e analisar os diversos cenários na negociação, considerando um conjunto de aspectos relevantes para ambas as partes. No presente trabalho de dissertação formula-se uma proposta baseada no modelo de negociação Win Win Quantitativa, em que foi utilizada uma abordagem do método multicritério Analitic Hierarchy Process (AHP) para seleccionar a melhor opção de serviço para uma determinada empresa. Para o caso de estudo, num contexto real, foi necessário desenvolver uma aplicação Excel que permitisse analisar, de uma forma clara, as diversas alternativas perante os critérios mencionados. A aplicação do método AHP permite aos clientes tomar uma decisão potencialmente mais acertada. A aplicação informática procura optimizar os custos inerentes à prestação de serviços, oferecendo aos clientes um custo reduzido e assim tornando a empresa mais competitiva e atractiva para os potenciais clientes.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer Science
Resumo:
Os Mercados Eletrónicos atingiram uma complexidade e nível de sofisticação tão elevados, que tornaram inadequados os modelos de software convencionais. Estes mercados são caracterizados por serem abertos, dinâmicos e competitivos, e constituídos por várias entidades independentes e heterogéneas. Tais entidades desempenham os seus papéis de forma autónoma, seguindo os seus objetivos, reagindo às ocorrências do ambiente em que se inserem e interagindo umas com as outras. Esta realidade levou a que existisse por parte da comunidade científica um especial interesse no estudo da negociação automática executada por agentes de software [Zhang et al., 2011]. No entanto, a diversidade dos atores envolvidos pode levar à existência de diferentes conceptualizações das suas necessidades e capacidades dando origem a incompatibilidades semânticas, que podem prejudicar a negociação e impedir a ocorrência de transações que satisfaçam as partes envolvidas. Os novos mercados devem, assim, possuir mecanismos que lhes permitam exibir novas capacidades, nomeadamente a capacidade de auxiliar na comunicação entre os diferentes agentes. Pelo que, é defendido neste trabalho que os mercados devem oferecer serviços de ontologias que permitam facilitar a interoperabilidade entre os agentes. No entanto, os humanos tendem a ser relutantes em aceitar a conceptualização de outros, a não ser que sejam convencidos de que poderão conseguir um bom negócio. Neste contexto, a aplicação e exploração de relações capturadas em redes sociais pode resultar no estabelecimento de relações de confiança entre vendedores e consumidores, e ao mesmo tempo, conduzir a um aumento da eficiência da negociação e consequentemente na satisfação das partes envolvidas. O sistema AEMOS é uma plataforma de comércio eletrónico baseada em agentes que inclui serviços de ontologias, mais especificamente, serviços de alinhamento de ontologias, incluindo a recomendação de possíveis alinhamentos entre as ontologias dos parceiros de negociação. Este sistema inclui também uma componente baseada numa rede social, que é construída aplicando técnicas de análise de redes socias sobre informação recolhida pelo mercado, e que permite melhorar a recomendação de alinhamentos e auxiliar os agentes na sua escolha. Neste trabalho são apresentados o desenvolvimento e implementação do sistema AEMOS, mais concretamente: • É proposto um novo modelo para comércio eletrónico baseado em agentes que disponibiliza serviços de ontologias; • Adicionalmente propõem-se o uso de redes sociais emergentes para captar e explorar informação sobre relações entre os diferentes parceiros de negócio; • É definida e implementada uma componente de serviços de ontologias que é capaz de: • o Sugerir alinhamentos entre ontologias para pares de agentes; • o Traduzir mensagens escritas de acordo com uma ontologia em mensagens escritas de acordo com outra, utilizando alinhamentos previamente aprovados; • o Melhorar os seus próprios serviços recorrendo às funcionalidades disponibilizadas pela componente de redes sociais; • É definida e implementada uma componente de redes sociais que: • o É capaz de construir e gerir um grafo de relações de proximidade entre agentes, e de relações de adequação de alinhamentos a agentes, tendo em conta os perfis, comportamento e interação dos agentes, bem como a cobertura e utilização dos alinhamentos; • o Explora e adapta técnicas e algoritmos de análise de redes sociais às várias fases dos processos do mercado eletrónico. A implementação e experimentação do modelo proposto demonstra como a colaboração entre os diferentes agentes pode ser vantajosa na melhoria do desempenho do sistema e como a inclusão e combinação de serviços de ontologias e redes sociais se reflete na eficiência da negociação de transações e na dinâmica do mercado como um todo.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Spatial analysis and social network analysis typically take into consideration social processes in specific contexts of geographical or network space. The research in political science increasingly strives to model heterogeneity and spatial dependence. To better understand and geographically model the relationship between “non-political” events, streaming data from social networks, and political climate was the primary objective of the current study. Geographic information systems (GIS) are useful tools in the organization and analysis of streaming data from social networks. In this study, geographical and statistical analysis were combined in order to define the temporal and spatial nature of the data eminating from the popular social network Twitter during the 2014 FIFA World Cup. The study spans the entire globe because Twitter’s geotagging function, the fundamental data that makes this study possible, is not limited to a geographic area. By examining the public reactions to an inherenlty non-political event, this study serves to illuminate broader questions about social behavior and spatial dependence. From a practical perspective, the analyses demonstrate how the discussion of political topics fluсtuate according to football matches. Tableau and Rapidminer, in addition to a set basic statistical methods, were applied to find patterns in the social behavior in space and time in different geographic regions. It was found some insight into the relationship between an ostensibly non-political event – the World Cup - and public opinion transmitted by social media. The methodology could serve as a prototype for future studies and guide policy makers in governmental and non-governmental organizations in gauging the public opinion in certain geographic locations.
Resumo:
This work project focuses on developing new approaches which enhance Portuguese exports towards a defined German industry sector within the information technology and electronics fields. Firstly and foremost, information was collected and a set of expert and top managers’ interviews were performed in order to acknowledge the demand of the German market while identifying compatible Portuguese supply capabilities. Among the main findings, Industry 4.0 presents itself as a valuable opportunity in the German market for Portuguese medium sized companies in the embedded systems area of expertise for machinery and equipment companies. In order to achieve the purpose of the work project, an embedded systems platform targeting machinery and equipment companies was suggested as well as it was developed several recommendations on how to implement it. An alternative approach for this platform was also considered within the German market namely the eHealth sector having the purpose of enhancing the current healthcare service provision.
Resumo:
The present paper is a personal reflection on a work project carried out to promote exports from Portugal to Germany in the IT area, under consideration of the deliverables required by the clients CCILA and Anetie. The project outcome approaches the fact that the majority of the Portuguese market players has disadvantages in size and does rarely coordinate activities among each other, which hinders them to export successfully on a broad scale. To bring together Portuguese delivery potential and German market demand, expert interviews were conducted. Based on the findings, a concept was developed to overcome the domestic collaboration issues in order to strengthen the national exports in the identified sector - embedded systems implementation services for machinery and equipment companies.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.
Resumo:
"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"