961 resultados para cytochrome P450 2C19
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.
Resumo:
We investigated roles of different forms of cytochrome P450 (P450 or CYP) in the metabolic activation of heterocyclic amines (HCAs) and other procarcinogens to genotoxic metabolite(s) in the newly developed umu tester strains Salmonella typhimurium (S. typhimurium) OY1002/1A1, OY1002/1A2, OY1002/1B1, OY1002/2C9, OY1002/2D6, OY1002/2E1 and OY 1002/3A4. which express respective human P450 enzymes and NADPH-cytochrome P350 reductase (reductase) and bacterial O-acetyltransferase (O-AT). These strains were established by introducing two plasmids into S. typhimurium TA 1535, one carrying both P450 and the reductase cDNA in a bicistronic construct under control of an IPTG-inducible double me promoter and the other, pOA 102, carrying O-AT and umuClacZ fusion genes. Expression levels of CYP were found to range between 35 to 550 nmol/l cell culture in the strains tested. O-AT activities in different strains ranged from 52 to 135 nmol isoniazid acetylated/min/mg protein. All HCAs tested, and 2-aminoanthracene and 2-aminofluorene exhibited high genotoxicity in the OY1002/1A2 strain, and genotoxicity of 2-amino-3-methylimidazo [4,5-f]quinoline was detected in both the OY1002/1A1 and OY1002/1A2 strains. 1-Amino-1,4-dimethyl-5H-pyrido[4.3-b]-indole and 3-amino-1-methyl-5H-pyrido[4,3-b]-indole were activated in the OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4 strains. Aflatoxin B-1 exhibited genotoxicity in the OY1002/1A2, OY1002/1A1, and OY1002/3A4 strains. beta -Naphthylamine and benzo[a]pyrene did not exhibit genotoxicity in any of the strains. These results suggest that CYP1A2 is the major cytochrom P450 enzyme involved in bioactivation of HCAs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The term "pharmacogenetics" has been defined as the scientific study of inherited factors that affect the human drug response. Many pharmacogenetie studies have been published since 1995 and have focussed on the principal enzyme family involved in drug metabolism, the cytochrome P450 family, particularly cytochrome P4502C9 and 2C19. In order to investigate the pharmacogenetic aspect of pharmacotherapy, the relevant studies describing the association of pharmacogenetic factor(s) in drug responses must be retrieved from existing literature using a systematic review approach. In addition, the estimation of variant allele prevalence for the gene under study between different ethnic populations is important for pharmacogenetic studies. In this thesis, the prevalence of CYP2C9/2C19 alleles between different ethnicities has been estimated through meta-analysis and the population genetic principle. The clinical outcome of CYP2C9/2C19 allelic variation on the pharmacotherapy of epilepsy has been investigated; although many new antiepileptic drugs have been launched into the market, carbamazepine, phenobarbital and phenytoin are still the major agents in the pharmacotherapy of epilepsy. Therefore, phenytoin was chosen as a model AED and the effect of CYP2C9/2C19 genetic polymorphism on phenytoin metabolism was further examined.An estimation of the allele prevalence was undertaken for three CYP2C9/2C19 alleles respectively using a meta-analysis of studies that fit the Hardy-Weinberg equilibrium. The prevalence of CYP2C9*1 is approximately 81%, 96%, 97% and 94% in Caucasian, Chinese, Japanese, African populations respectively; the pooled prevalence of CYP2C19*1 is about 86%, 57%, 58% and 85% in these ethnic populations respectively. However, the studies of association between CYP2C9/2C19 polymorphism and phenytoin metabolism failed to achieve any qualitative or quantitative conclusion. Therefore, mephenytoin metabolism was examined as a probe drug for association between CYP2C19 polymorphism and mephenytoin metabolic ratio. Similarly, analysis of association between CYP2C9 polymorphism and warfarin dose requirement was undertaken.It was confirmed that subjects carrying two mutated CYP2C19 alleles have higher S/R mephenytoin ratio due to deficient CYP2C19 enzyme activity. The studies of warfarin and CYP2C9 polymorphism did not provide a conclusive result due to poor comparability between studies.The genetic polymorphism of drug metabolism enzymes has been studied extensively, however other genetic factors, such as multiple drug resistance genes (MDR) and genes encoding ion channels, which may contribute to variability in function of drug transporters and targets, require more attention in future pharmacogenetic studies of antiepileptic drugs.
Resumo:
Background: NADPH-cytochrome- P450 oxidoreductase (CPR) is a ubiquitous enzyme that belongs to a family of diflavin oxidoreductases and is required for activity of the microsomal cytochrome-P450 monooxygenase system. CPR gene-disruption experiments have demonstrated that absence of this enzyme causes developmental defects both in mouse and insect. Results: Annotation of the sequenced genome of D. discoideum revealed the presence of three genes (redA, redB and redC) that encode putative members of the diflavin oxidoreductase protein family. redA transcripts are present during growth and early development but then decline, reaching undetectable levels after the mound stage. redB transcripts are present in the same levels during growth and development while redC expression was detected only in vegetative growing cells. We isolated a mutant strain of Dictyostelium discoideum following restriction enzyme-mediated integration (REMI) mutagenesis in which redA was disrupted. This mutant develops only to the mound stage and accumulates a bright yellow pigment. The mound-arrest phenotype is cell-autonomous suggesting that the defect occurs within the cells rather than in intercellular signaling. Conclusion: The developmental arrest due to disruption of redA implicates CPR in the metabolism of compounds that control cell differentiation.
Resumo:
Much of the individual variation in drug response is due to genetic drug metabolic polymorphisms. Clinically relevant examples include acetylator status; cytochrome P450 2D6, 2C9 and 2C19 polymorphisms; and thiopurine methyltransferase deficiency. It is important to be aware of which drugs are subject to pharmacogenetic variability. In the future, population-based pharmacogenetic testing will allow more individualized drug treatment and will avoid the current empiricism.
Resumo:
Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K-l of 0.9 muM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity.
Resumo:
Our groups have had a long-term interest in utilizing bacterial systems in the characterization of bioactivation and detoxication reactions catalyzed by cytochrome P450 (P450) and glutathione transferase (GST) enzymes. Bacterial systems remain the first choice for initial screens with new chemicals and have advantages, including high-throughput capability. Most human P450s of interest in toxicology have been readily expressed in Escherichia coli with only minor sequence modification. These enzymes can be readily purified and used in assays of activation of chemicals. Bicistronic systems have been developed in order to provide the auxiliary NADPH-P450 reductase. Alternative systems involve these enzymes expressed together within bacteria. In one approach, a lac selection system is used with E. coli and has been applied to the characterization of inhibitors of P450s 1A2 and 1131, as well as in basic studies involving random mutagenesis. Another approach utilizes induction of the SOS (umu) response in Salmonella typhimurium, and systems have now been developed with human P450s 1A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4, which have been used to report responses from heterocyclic amines. S. typhimurium his reporter systems have also been used with GSTs, first to demonstrate the role of rat GST 5-5 in the activation of dihalomethanes. These systems have been used to compare these GSTs with regard to activation of dihaloalkanes and potential toxicity. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Electrochemistry of bacterial cytochrome P450cin (CYP176A) reveals that, unusually, substrate binding does not affect the heme redox potential, although a marked pH dependence is consistent with a coupled single electron/single proton transfer reaction in the range 6 < pH < 10.
Resumo:
The use of quetiapine for treatment of bipolar disorders at a higher dosage than the licensed range is not unusual in clinical practice. Quetiapine is predominantly metabolised by cytochrome P450 3A4 (CYP3A4) and to a lesser extent by CYP2D6. The large interindividual variability of those isozyme activities could contribute to the variability observed in quetiapine dosage. The aim of the present study is to evaluate if the use of high dosages of quetiapine in some patients, as compared to patients treated with a dosage in the licensed range (up to 800 mg/day), could be explained by a high activity of CYP3A4 and/or of CYP2D6. CYP3A4 activities were determined using the midazolam metabolic ratio in 21 bipolar and schizoaffective bipolar patients genotyped for CYP2D6. 9 patients were treated with a high quetiapine dosage (mean ± SD, median; range: 1467 ± 625, 1200; 1000-3000 mg/day) and 11 with a normal quetiapine dosage (433 ± 274, 350; 100-800 mg/day). One patient in the high dose and one patient in the normal dose groups were genotyped as CYP2D6 ultrarapid metabolizers. CYP3A4 activities were not significantly different between the two groups (midazolam metabolic ratio: 9.4 ± 8.2; 6.2; 1.7-26.8 vs 3.9 ± 2.3; 3.8; 1.5-7.6, in the normal dose group as compared to the high dose group, respectively, NS). The use of high quetiapine dosage for the patients included in the present study cannot be explained by variations in pharmacokinetics parameters such as a high activity of CYP3A4 and/or of CYP2D6.
Resumo:
In this study, we investigated the expression and activity of liver cytochrome P450s (CYPs) and praziquantel (PZQ) kinetics in mice infected with Schistosoma mansoni. Swiss Webster (SW) mice of both genders were infected (100 cercariae) on postnatal day 10 and killed on post-infection days (PIDs) 30 or 55. Non-infected mice of the same age and sex served as controls. Regardless of mouse sex, infection depressed the activities of CYP1A [ethoxy/methoxy-resorufin-O-dealkylases (EROD/MROD)], 2B9/10 [pentoxy/benzyloxy-resorufin-O-dealkylases (PROD, BROD)], 2E1 [p-nitrophenol-hydroxylase (PNPH)] and 3A11 [erythromycin N-demethylase (END)] on PID 55 but not on PID 30. On PID 55, infection decreased liver CYP mRNA levels (real-time reverse transcription-polymerase chain reaction). On PID 30, whereas mRNA levels remained unaltered in males, they were depressed in females. Plasma PZQ (200 and 400 mg/kg body weight intraperitoneally) levels were measured (high-performance liquid chromatography) at different post-treatment intervals. In males and females, infection delayed the PZQ clearance on PID 55, but not on PID 30. Therefore, it can be concluded that schistosomiasis down-modulated CYP expression and activity and delayed PZQ clearance on PID 55, when a great number of parasite eggs were lodged in the liver. On PID 30, when egg-laying was initiated by the worms, no change of CYP expression and activity was found, except for a depression of CYP1A2 and 3A11 mRNAs in female mice.
Resumo:
The role of cytochrome P450 in the metabolism of dextromethorphan, amitriptyline, midazolam, S-mephenytoin, citalopram, fluoxetine and sertraline was investigated in rat and human brain microsomes. Depending on the parameters, the limit of quantification using gas chromatography-mass spectrometry methods was between 1.6 and 20 pmol per incubation, which generally contained 1500 microg protein. Amitriptyline was shown to be demethylated to nortriptyline by both rat and human microsomes. Inhibition studies using ketoconazole, furafylline, sulfaphenazole, omeprazole and quinidine suggested that CYP3A4 is the isoform responsible for this reaction whereas CYP1A2, CYP2C9, CYP2C19 and CYP2D6 do not seem to be involved. This result was confirmed by using a monoclonal antibody against CYP3A4. Dextromethorphan was metabolized to dextrorphan in rat brain microsomes and was inhibited by quinidine and by a polyclonal antibody against CYP2D6. Only the addition of exogenous reductase allowed the measurement of this activity in human brain microsomes. Metabolites of the other substrates could not be detected, possibly due to an insufficiently sensitive method. It is concluded that cytochrome P450 activity in the brain is very low, but that psychotropic drugs could undergo a local cerebral metabolism which could have pharmacological and/or toxicological consequences.