379 resultados para cryptography
Resumo:
Number theory has in recent decades assumed a great practical importance, due primarily to its application to cryptography. This chapter discusses how elementary concepts of number theory may be illuminated and made accessible to upper secondary school students via appropriate spreadsheet models. In such environments, students can observe patterns, gain structural insight, form and test conjectures, and solve problems. The chapter begins by reviewing literature on the use of spreadsheets in general and the use of spreadsheets in number theory in particular. Two sample applications are then discussed. The first, factoring factorials, is presented and instructions are given to construct a model in Excel 2007. The second application, the RSA cryptosystem, is included because of its importance to Science, Technology, Engineering, and Mathematics (STEM) students. Number theoretic concepts relevant to RSA are discussed, and an outline of RSA. is given, with example. The chapter ends with instructions on how to construct a simple spreadsheet illustrating RSA.
Resumo:
Modular arithmetic has often been regarded as something of a mathematical curiosity, at least by those unfamiliar with its importance to both abstract algebra and number theory, and with its numerous applications. However, with the ubiquity of fast digital computers, and the need for reliable digital security systems such as RSA, this important branch of mathematics is now considered essential knowledge for many professionals. Indeed, computer arithmetic itself is, ipso facto, modular. This chapter describes how the modern graphical spreadsheet may be used to clearly illustrate the basics of modular arithmetic, and to solve certain classes of problems. Students may then gain structural insight and the foundations laid for applications to such areas as hashing, random number generation, and public-key cryptography.
Resumo:
In a traditional anti-jamming system a transmitter who wants to send a signal to a single receiver spreads the signal power over a wide frequency spectrum with the aim of stopping a jammer from blocking the transmission. In this paper, we consider the case that there are multiple receivers and the transmitter wants to broadcast a message to all receivers such that colluding groups of receivers cannot jam the reception of any other receiver. We propose efficient coding methods that achieve this goal and link this problem to well-known problems in combinatorics. We also link a generalisation of this problem to the Key Distribution Pattern problem studied in combinatorial cryptography.
Resumo:
A well-known attack on RSA with low secret-exponent d was given by Wiener about 15 years ago. Wiener showed that using continued fractions, one can efficiently recover the secret-exponent d from the public key (N,e) as long as d < N 1/4. Interestingly, Wiener stated that his attack may sometimes also work when d is slightly larger than N 1/4. This raises the question of how much larger d can be: could the attack work with non-negligible probability for d=N 1/4 + ρ for some constant ρ > 0? We answer this question in the negative by proving a converse to Wiener’s result. Our result shows that, for any fixed ε > 0 and all sufficiently large modulus lengths, Wiener’s attack succeeds with negligible probability over a random choice of d < N δ (in an interval of size Ω(N δ )) as soon as δ > 1/4 + ε. Thus Wiener’s success bound d
Resumo:
NLS is one of the stream ciphers submitted to the eSTREAM project. We present a distinguishing attack on NLS by Crossword Puzzle (CP) attack method which is introduced in this paper. We build the distinguisher by using linear approximations of both the non-linear feedback shift register (NFSR) and the nonlinear filter function (NLF). Since the bias of the distinguisher depends on the Konst value, which is a key-dependent word, we present the graph showing how the bias of distinguisher vary with Konst. In result, we estimate the bias of the distinguisher to be around O(2^−30). Therefore, we claim that NLS is distinguishable from truly random cipher after observing O(2^60) keystream words. The experiments also show that our distinguishing attack is successful on 90.3% of Konst among 2^32 possible values. We extend the CP attack to NLSv2 which is a tweaked version of NLS. In result, we build a distinguisher which has the bias of around 2− 48. Even though this attack is below the eSTREAM criteria (2^−40), the security margin of NLSv2 seems to be too low.
Resumo:
This book constitutes the refereed proceedings of the 11th International Conference on Cryptology and Network Security, CANS 2012, held in Darmstadt, Germany, in December 2012. The 22 revised full papers, presented were carefully reviewed and selected from 99 submissions. The papers are organized in topical sections on cryptanalysis; network security; cryptographic protocols; encryption; and s-box theory.
Resumo:
Cumulative arrays have played an important role in the early development of the secret sharing theory. They have not been subject to extensive study so far, as the secret sharing schemes built on them generally result in much larger sizes of shares, when compared with other conventional approaches. Recent works in threshold cryptography show that cumulative arrays may be the appropriate building blocks in non-homomorphic threshold cryptosystems where the conventional secret sharing methods are generally of no use. In this paper we study several extensions of cumulative arrays and show that some of these extensions significantly improve the performance of conventional cumulative arrays. In particular, we derive bounds on generalised cumulative arrays and show that the constructions based on perfect hash families are asymptotically optimal. We also introduce the concept of ramp perfect hash families as a generalisation of perfect hash families for the study of ramp secret sharing schemes and ramp cumulative arrays.
Resumo:
Universal One-Way Hash Functions (UOWHFs) may be used in place of collision-resistant functions in many public-key cryptographic applications. At Asiacrypt 2004, Hong, Preneel and Lee introduced the stronger security notion of higher order UOWHFs to allow construction of long-input UOWHFs using the Merkle-Damgård domain extender. However, they did not provide any provably secure constructions for higher order UOWHFs. We show that the subset sum hash function is a kth order Universal One-Way Hash Function (hashing n bits to m < n bits) under the Subset Sum assumption for k = O(log m). Therefore we strengthen a previous result of Impagliazzo and Naor, who showed that the subset sum hash function is a UOWHF under the Subset Sum assumption. We believe our result is of theoretical interest; as far as we are aware, it is the first example of a natural and computationally efficient UOWHF which is also a provably secure higher order UOWHF under the same well-known cryptographic assumption, whereas this assumption does not seem sufficient to prove its collision-resistance. A consequence of our result is that one can apply the Merkle-Damgård extender to the subset sum compression function with ‘extension factor’ k+1, while losing (at most) about k bits of UOWHF security relative to the UOWHF security of the compression function. The method also leads to a saving of up to m log(k+1) bits in key length relative to the Shoup XOR-Mask domain extender applied to the subset sum compression function.
Resumo:
One-time proxy signatures are one-time signatures for which a primary signer can delegate his or her signing capability to a proxy signer. In this work we propose two one-time proxy signature schemes with different security properties. Unlike other existing one-time proxy signatures that are constructed from public key cryptography, our proposed schemes are based one-way functions without trapdoors and so they inherit the communication and computation efficiency from the traditional one-time signatures. Although from a verifier point of view, signatures generated by the proxy are indistinguishable from those created by the primary signer, a trusted authority can be equipped with an algorithm that allows the authority to settle disputes between the signers. In our constructions, we use a combination of one-time signatures, oblivious transfer protocols and certain combinatorial objects. We characterise these new combinatorial objects and present constructions for them.
Resumo:
We determine the affine equivalence classes of the eight variable degree three homogeneous bent functions using a new algorithm. Our algorithm applies to general bent functions and can systematically determine the automorphism groups. We provide a partial verification of the enumeration of eight variable degree three homogeneous bent functions obtained by Meng et al. We determine the affine equivalence classes of these functions.
Efficient extension of standard Schnorr/RSA signatures into Universal Designated-Verifier Signatures
Resumo:
Universal Designated-Verifier Signature (UDVS) schemes are digital signature schemes with additional functionality which allows any holder of a signature to designate the signature to any desired designated-verifier such that the designated-verifier can verify that the message was signed by the signer, but is unable to convince anyone else of this fact. Since UDVS schemes reduce to standard signatures when no verifier designation is performed, it is natural to ask how to extend the classical Schnorr or RSA signature schemes into UDVS schemes, so that the existing key generation and signing implementation infrastructure for these schemes can be used without modification. We show how this can be efficiently achieved, and provide proofs of security for our schemes in the random oracle model.
Resumo:
Multi-party key agreement protocols indirectly assume that each principal equally contributes to the final form of the key. In this paper we consider three malleability attacks on multi-party key agreement protocols. The first attack, called strong key control allows a dishonest principal (or a group of principals) to fix the key to a pre-set value. The second attack is weak key control in which the key is still random, but the set from which the key is drawn is much smaller than expected. The third attack is named selective key control in which a dishonest principal (or a group of dishonest principals) is able to remove a contribution of honest principals to the group key. The paper discusses the above three attacks on several key agreement protocols, including DH (Diffie-Hellman), BD (Burmester-Desmedt) and JV (Just-Vaudenay). We show that dishonest principals in all three protocols can weakly control the key, and the only protocol which does not allow for strong key control is the DH protocol. The BD and JV protocols permit to modify the group key by any pair of neighboring principals. This modification remains undetected by honest principals.
Resumo:
The power of sharing computation in a cryptosystem is crucial in several real-life applications of cryptography. Cryptographic primitives and tasks to which threshold cryptosystems have been applied include variants of digital signature, identification, public-key encryption and block ciphers etc. It is desirable to extend the domain of cryptographic primitives which threshold cryptography can be applied to. This paper studies threshold message authentication codes (threshold MACs). Threshold cryptosystems usually use algebraically homomorphic properties of the underlying cryptographic primitives. A typical approach to construct a threshold cryptographic scheme is to combine a (linear) secret sharing scheme with an algebraically homomorphic cryptographic primitive. The lack of algebraic properties of MACs rules out such an approach to share MACs. In this paper, we propose a method of obtaining a threshold MAC using a combinatorial approach. Our method is generic in the sense that it is applicable to any secure conventional MAC by making use of certain combinatorial objects, such as cover-free families and their variants. We discuss the issues of anonymity in threshold cryptography, a subject that has not been addressed previously in the literature in the field, and we show that there are trade-offis between the anonymity and efficiency of threshold MACs.
Resumo:
While formal definitions and security proofs are well established in some fields like cryptography and steganography, they are not as evident in digital watermarking research. A systematic development of watermarking schemes is desirable, but at present their development is usually informal, ad hoc, and omits the complete realization of application scenarios. This practice not only hinders the choice and use of a suitable scheme for a watermarking application, but also leads to debate about the state-of-the-art for different watermarking applications. With a view to the systematic development of watermarking schemes, we present a formal generic model for digital image watermarking. Considering possible inputs, outputs, and component functions, the initial construction of a basic watermarking model is developed further to incorporate the use of keys. On the basis of our proposed model, fundamental watermarking properties are defined and their importance exemplified for different image applications. We also define a set of possible attacks using our model showing different winning scenarios depending on the adversary capabilities. It is envisaged that with a proper consideration of watermarking properties and adversary actions in different image applications, use of the proposed model would allow a unified treatment of all practically meaningful variants of watermarking schemes.
Resumo:
Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block cipher is ideal. We address the problem of building indifferentiable compression functions from the PGV compression functions. We consider a general form of 64 PGV compression functions and replace the linear feed-forward operation in this generic PGV compression function with an ideal block cipher independent of the one used in the generic PGV construction. This modified construction is called a generic modified PGV (MPGV). We analyse indifferentiability of the generic MPGV construction in the ideal cipher model and show that 12 out of 64 MPGV compression functions in this framework are indifferentiable from a FIL-RO. To our knowledge, this is the first result showing that two independent block ciphers are sufficient to design indifferentiable single-block-length compression functions.