930 resultados para crack growth


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A study of the influence of macroscopic quenching stresses on long fatigue crack growth in an aluminium alloy-SiC composite has been made. Direct comparison between quenched plate, where high residual stresses are present, and quenched and stretched plate, where they have been eliminated, has highlighted their rôle in crack closure. Despite similar strength levels and identical crack growth mechanisms, the stretched composite displays faster crack growth rates over the complete range of ΔK, measured at R = 0.1, with threshold being displaced to a lower nominal ΔK value. Closure levels are dependent upon crack length, but are greater in the unstretched composite, due to the effect of surface compressive stresses acting to close the crack tip. These result in lower values of ΔKeff in the unstretched material, explaining the slower crack growth rates. Effective ΔKth values are measured at 1.7 MPa√m, confirmed by constant Kmax testing. In the absence of residual stress, closure levels of approximately 2.5 MPa√m are measured and this is attributed to a roughness mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogen assisted subcritical cleavage of the ferrite matrix occurs during fatigue of a duplex stainless steel in gaseous hydrogen. The ferrite fails by a cyclic cleavage mechanism and fatigue crack growth rates are independent of frequency between 0.1 and 5 Hz. Macroscopic crack growth rates are controlled by the fraction of ferrite grains cleaving along the crack front, which can be related to the maximum stress intensity, Kmax. A superposition model is developed to predict simultaneously the effects of stress intensity range (ΔK) and K ratio (Kmin/Kmax). The effect of Kmax is rationalised by a local cleavage criterion which requires a critical tensile stress, normal to the {001} cleavage plane, acting over a critical distance within an embrittled zone at the crack tip. © 1991.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of temperature on hydrogen assisted fatigue crack propagation are investigated in three steels in the low-to-medium strength range; a low alloy structural steel, a super duplex stainless steel, and a super ferritic stainless steel. Significant enhancement of crack growth rates is observed in hydrogen gas at atmospheric pressure in all three materials. Failure occurs via a mechanism of time independent, transgranular, cyclic cleavage over a frequency range of 0.1-5 Hz. Increasing the temperature in hydrogen up to 80°C markedly reduces the degree of embrittlement in the structural and super ferritic steels. No such effect is observed in the duplex stainless steel until the temperature exceeds 120°C. The temperature response may be understood by considering the interaction between absorbed hydrogen and micro-structural traps, which are generated in the zone of intense plastic deformation ahead of the fatigue crack tip. © 1992.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue crack propagation, tensile and fracture toughness data for four aeroengine bearing steels are reported. The steels involved are the through-hardened tool steels 18-4-1 (T1) and M50, and two similar carburized steels, RBD and Volvic. Crack growth data have been obtained at 20 °C and 280 °C to cover the range of oil temperatures experienced in aeroengine bearing operations. At 20 °C threshold ΔK values (ΔKth) ranged between 3.5 and 4.5 MPa √m with Paris exponents (m) of between 2.0 and 3.5. The lowest m-values were seen in the carburizing steels, which also exhibited lower Paris regime crack growth rates than M50 and 18-4-1. For all the steels, growth rates were higher at 280 °C,than 20 °C, although there was a slight tendency for ΔKth to increase, probably associated with oxide-induced closure at 280 °C. The effects of primary carbides, strength and toughness on fatigue crack growth behaviour are discussed, in relation to the importance of static-mode cracking. © 1990.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The results of fracture toughness tests on a high strength steel 300m are presented. These results show (i) that in the presence of through-thickness cracks the toughness remains constant down to (a/W)-ratios as low as 0.01 and failure loads up to 0.85σy, and (ii) that the material is more resistant to crack growth when the cracks are semi-elliptical in shape, giving a toughness value which is almost 25 per cent higher than the through-thickness one. Three independent stress analyses are used to obtain stress intensity values for the semi-elliptical cracks and additional confirmation of the increase in toughness comes from stretch zone measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The initiation and early propagation of short fatigue cracks has been studied in detail in two alpha / beta titanium alloys as a function of microstructure. Detailed metallography is presented relating short crack growth rates to the microstructural features present. The work shows the significant differences in short crack propagation rates which can be achieved by microstructural changes within a single alloy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The behaviour of short fatigue cracks is shown to be relevant only to a limited number of engineering situations. Within these situations, further restrictions on the extent to which metallurgical control can be exerted to improve fatigue crack growth behaviour are identified. The degree of control remaining is discussed in terms of two separate regimes which are described as intrinsic and extrinsic crack growth resistance. These separate effects are highlighted by comparisons both within and between a wide range of alloy systems. The implications of such an analysis are discussed in terms of aerospace applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue crack propagation and threshold data for two Ni-base alloys, Astroloy and Nimonic 901, are reported. At room temperature the effect which altering the load ratio (R-ratio) has on fatigue behaviour is strongly dependent on grain size. In the coarse grained microstructures crack growth rates increase and threshold values decrease markedly as R rises from 0. 1 to 0. 8, whereas only small changes in behaviour occur in fine grained material. In Astroloy, when strength level and gamma grain size are kept constant, there is very little effect of processing route and gamma prime distribution on room temperature threshold and crack propagation results. The dominant microstructural effect on this type of fatigue behaviour is the matrix ( gamma ) grain size itself.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The problems of plasticity and non-linear fracture mechanics have been generally recognized as the most difficult problems of solid mechanics. The present dissertation is devoted to some problems on the intersection of both plasticity and non-linear fracture mechanics. The crack tip is responsible for the crack growth and therefore is the focus of fracture science. The problem of crack has been studied by an army of outstanding scholars and engineers in this century, but has not, as yet, been solved for many important practical situations. The aim of this investigation is to provide an analytical solution to the problem of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the solution to a classical problem of the mechanics of composite materials.^ In this work, the stresses inside the plastic region near the crack tip in a composite material made of two different elastic-perfectly plastic materials are studied. The problems of an interface crack, a crack impinging an interface at the right angle and at arbitrary angles are examined. The constituent materials are assumed to obey the Huber-Mises yielding condition criterion. The theory of slip lines for plane strain is utilized. For the particular homogeneous case these problems have two solutions: the continuous solution found earlier by Prandtl and modified by Hill and Sokolovsky, and the discontinuous solution found later by Cherepanov. The same type of solutions were discovered in the inhomogeneous problems of the present study. Some reasons to prefer the discontinuous solution are provided. The method is also applied to the analysis of a contact problem and a push-in/pull-out problem to determine the critical load for plasticity in these classical problems of the mechanics of composite materials.^ The results of this dissertation published in three journal articles (two of which are under revision) will also be presented in the Invited Lecture at the 7$\rm\sp{th}$ International Conference on Plasticity (Cancun, Mexico, January 1999). ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction method, to characterize the crack tip solution, and the Heaviside enrichment function for representing discontinuity due to a crack, has been used to model crack propagation through non-homogenous materials. In the case of interface crack propagation, the kink angle is predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are extracted using the interaction integral method. The proposed EFG method has been developed and applied for 2D case studies involving a crack in an orthotropic material, crack along an interface and a crack terminating at a bi-material interface, under mechanical or thermal loading; this is done to demonstrate the advantages and efficiency of the proposed methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are compared with existing results in the literature and are found to be in good agreement. An example of crack growth through a particle-reinforced composite materials, which may involve crack meandering around the particle, is reported.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A significant part of the life of a mechanical component occurs, the crack propagation stage in fatigue. Currently, it is had several mathematical models to describe the crack growth behavior. These models are classified into two categories in terms of stress range amplitude: constant and variable. In general, these propagation models are formulated as an initial value problem, and from this, the evolution curve of the crack is obtained by applying a numerical method. This dissertation presented the application of the methodology "Fast Bounds Crack" for the establishment of upper and lower bounds functions for model evolution of crack size. The performance of this methodology was evaluated by the relative deviation and computational times, in relation to approximate numerical solutions obtained by the Runge-Kutta method of 4th explicit order (RK4). Has been reached a maximum relative deviation of 5.92% and the computational time was, for examples solved, 130,000 times more higher than achieved by the method RK4. Was performed yet an Engineering application in order to obtain an approximate numerical solution, from the arithmetic mean of the upper and lower bounds obtained in the methodology applied in this work, when you don’t know the law of evolution. The maximum relative error found in this application was 2.08% which proves the efficiency of the methodology "Fast Bounds Crack".

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in a wide spectrum of areas, ranging from nondestructive testing for the detection of materials defects to monitoring of microseismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary longitudinal waves), S waves (shear/transverse waves) and Rayleigh (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use acoustic emission technique for accurate identification of source, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals along with the characteristics of the source. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location and its characteristics in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in wide spectrum areas, ranging from non-destructive testing for the detection of materials defects to monitoring of microeismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary/longitudinal waves), S waves (shear/transverse waves) and Rayleight (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use the acoustic emission technique for accurate identification of source location, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.