985 resultados para coupled-cluster theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the plate bending formulation of the boundary element method (BEM) based on the Reissner's hypothesis is extended to the analysis of zoned plates in order to model a building floor structure. In the proposed formulation each sub-region defines a beam or a slab and depending on the way the sub-regions are represented, one can have two different types of analysis. In the simple bending problem all sub-regions are defined by their middle surface. on the other hand, for the coupled stretching-bending problem all sub-regions are referred to a chosen reference surface, therefore eccentricity effects are taken into account. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. The bending and stretching values defined on the interfaces are approximated along the beam width, reducing therefore the number of degrees of freedom. Then, in the proposed model the set of equations is written in terms of the problem values on the beam axis and on the external boundary without beams. Finally some numerical examples are presented to show the accuracy of the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate three- and four-point functions in super Liouville theory coupled to a super Coulomb gas on world sheets with spherical topology. We first integrate over the zero mode and assume that a parameter takes an integer value. We find the amplitudes, give plausibility arguments in favor of the result, and formally continue the parameter to an arbitrary real number. Remarkably the result is completely parallel to the bosonic case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atomic tunneling between two tunnel-coupled Bose-Einstein condensates (BECs) in a double-well time-dependent trap was studied. For the slowly varying trap, synchronization of oscillations of the trap with oscillations of the relative population was predicted. Using the Melnikov approach, the appearance of the chaotic oscillations in the tunneling phenomena between the condensates was confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collapse of trapped Boson-Einstein condensate (BEC) of atoms in states 1 and 2 was studied. When the interaction among the atoms in state i was attractive the component i of the condensate experienced collapse. When the interaction between an atom in state 1 and state 2 was attractive both components experienced collapse. The time-dependant Gross-Pitaevski (GP) equation was used to study the time evolution of the collapse. There was an alternate growth and decay in the number of particles experiencing collapse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an integrable conformally invariant two-dimensional model associated to the affine Kac-Moody algebra sl3(ℂ). It possesses four scalar fields and six Dirac spinors. The theory does not possesses a local Lagrangian since the spinor equations of motion present interaction terms which are bilinear in the spinors. There exists a submodel presenting an equivalence between a U(1) vector current and a topological current, which leads to a confinement of the spinors inside the solitons. We calculate the one-soliton and two-soliton solutions using a procedure which is a hybrid of the dressing and Hirota methods. The soliton masses and time delays due to the soliton interactions are also calculated. We give a computer program to calculate the soliton solutions. © 2002 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The restructuring of energy markets to provide free access to the networks and the consequent increase of the number of power transactions has been causing congestions in transmission systems. As consequence, the networks suffer overloads in a more frequent way. One parameter that has strong influence on transfer capability is the reactive power flow. A sensitivity analysis can be used to find the best solution to minimize the reactive power flows and relief, the overload in one transmission line. The proposed methodology consists on the computation of two sensitivities based on the use of the Lc matrix from CRIC (Constant Reactive Implicitly Coupled) power flow method, that provide a set of actions to reduce the reactive power flow and alleviate overloads in the lines: (a) sensitivity between reactive power flow in lines and reactive power injections in the buses, (b) sensitivity between reactive power flow in lines and transformer's taps. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A few properties of the nonminimal vector interaction in the Duffin-Kemmer-Petiau theory in the scalar sector are revised. In particular, it is shown that the nonminimal vector interaction has been erroneously applied to the description of elastic meson-nucleus scatterings and that the space component of the nonminimal vector interaction plays a peremptory role for the confinement of bosons whereas its time component contributes to the leakage. Scattering in a square step potential is used to show that Klein's paradox does not manifest in the case of a nonminimal vector coupling. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution- NonCommercial-ShareAlike Licence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a N - S box system consisting of a rectangular conductor coupled to a superconductor. The Green functions are constructed by solving the Bogoliubov-de Gennes equations at each side of the interface, with the pairing potential described by a step-like function. Taking into account the mismatch in the Fermi wave number and the effective masses of the normal metal - superconductor and the tunnel barrier at the interface, we use the quantum section method in order to find the exact energy Green function yielding accurate computed eigenvalues and the density of states. Furthermore, this procedure allow us to analyze in detail the nontrivial semiclassical limit and examine the range of applicability of the Bohr-Sommerfeld quantization method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this note is the construction of a geometrical structure for a supersymmetric N = 2, d = 5 Yang-Mills theory on the group manifold. From a general hypothesis proposed for the curvatures of the theory, the Bianchi identities are solved, whose solution will be fundamental for the construction of the geometrical action for the N = 2, d = 5 supergravity and Yang-Mills coupled theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of the Restricted Dynamics Approach in nuclear theory, based on the approximate solution of many-particle Schrödinger equation, which accounts for all conservation laws in many-nucleon system, is discussed. The Strictly Restricted Dynamics Model is used for the evaluation of binding energies, level schemes, E2 and Ml transition probabilities as well as the electric quadrupole and magnetic dipole momenta of light a-cluster type nuclei in the region 4 ≤ A ≤ 40. The parameters of effective nucleonnucleon interaction potential are evaluated from the ground state binding energies of doubly magic nuclei 4He, 16O and 40Ca.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT