967 resultados para cosmic background radiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Tumor volume has been shown to be a prognostic factor for the response of some tumors to radiotherapy. TNM stage has prognostic value for patients treated surgically for non-small cell lung cancer (NSCLC), but its value is less clear for patients treated by nonsurgical means. This may be because tumor size is not a consistent determinant of T stage or stage group. As part of the preliminary analyses for the Trans-Tasman Radiation Oncology Group 99-05 study, the authors performed this analysis to determine to what extent stage reflects tumor volume. Methods: In this prospective multicenter observational study, patients had to have histologically proven NSCLC, no evidence of disease beyond the primary site or thoracic lymph nodes, and been planned for radical radiotherapy with or without chemotherapy. Tumor volume measurements were based on computed tomography-based treatment planning images. Results: Four hundred four patients were available for analysis. There was a strong correlation between (log) maximum tumor diameter and (log) tumor volume (r = 0.93, p < 0.001). Although there was a highly significant trend of increasing volume with increasing T stage and stage group, when tumors were categorized into four groups according to increasing volume, there was only 55% concordance with T stage and 67% concordance with stage group. Conclusions: There is limited correlation between tumor size and disease stage in patients with NSCLC. This justifies documentation and investigation of size as a potential prognostic factor independent of stage. Maximum tumor diameter may be an adequate substitute for volume as a measurement of size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a morphology study of intermediate-redshift (0.2 < z < 1.2) luminous infrared galaxies (LIRGs) and general field galaxies in the GOODS fields using a revised asymmetry measurement method optimized for deep fields. By taking careful account of the importance of the underlying sky-background structures, our new method does not suffer from systematic bias and offers small uncertainties. By redshifting local LIRGs and low-redshift GOODS galaxies to different higher redshifts, we have found that the redshift dependence of the galaxy asymmetry due to surface-brightness dimming is a function of the asymmetry itself, with larger corrections for more asymmetric objects. By applying redshift-, infrared (IR)-luminosity- and optical-brightness-dependent asymmetry corrections, we have found that intermediate-redshift LIRGs generally show highly asymmetric morphologies, with implied merger fractions ~50% up to z = 1.2, although they are slightly more symmetric than local LIRGs. For general field galaxies, we find an almost constant relatively high merger fraction (20%-30%). The B-band luminosity functions (LFs) of galaxy mergers are derived at different redshifts up to z = 1.2 and confirm the weak evolution of the merger fraction after breaking the luminosity-density degeneracy. The IR LFs of galaxy mergers are also derived, indicating a larger merger fraction at higher IR luminosity. The integral of the merger IR LFs indicates a dramatic evolution of the merger-induced IR energy density [(1 + z)^~(5-6)], and that galaxy mergers start to dominate the cosmic IR energy density at z greater than or ~ 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy-corrected for geometrical effects-is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of observed ultra-high energy cosmic rays (UHECRs, energies in excess of $10^{18.5}$ eV) remains unknown, as extragalactic magnetic fields deflect these charged particles from their true origin. Interactions of these UHECRs at their source would invariably produce high energy neutrinos. As these neutrinos are chargeless and nearly massless, their propagation through the universe is unimpeded and their detection can be correlated with the origin of UHECRs. Gamma-ray bursts (GRBs) are one of the few possible origins for UHECRs, observed as short, immensely bright outbursts of gamma-rays at cosmological distances. The energy density of GRBs in the universe is capable of explaining the measured UHECR flux, making them promising UHECR sources. Interactions between UHECRs and the prompt gamma-ray emission of a GRB would produce neutrinos that would be detected in coincidence with the GRB’s gamma-ray emission. The IceCube Neutrino Observatory can be used to search for these neutrinos in coincidence with GRBs, detecting neutrinos through the Cherenkov radiation emitted by secondary charged particles produced in neutrino interactions in the South Pole glacial ice. Restricting these searches to be in coincidence with GRB gamma-ray emis- sion, analyses can be performed with very little atmospheric background. Previous searches have focused on detecting muon tracks from muon neutrino interactions fromthe Northern Hemisphere, where the Earth shields IceCube’s primary background of atmospheric muons, or spherical cascade events from neutrinos of all flavors from the entire sky, with no compelling neutrino signal found. Neutrino searches from GRBs with IceCube have been extended to a search for muon tracks in the Southern Hemisphere in coincidence with 664 GRBs over five years of IceCube data in this dissertation. Though this region of the sky contains IceCube’s primary background of atmospheric muons, it is also where IceCube is most sensitive to neutrinos at the very highest energies as Earth absorption in the Northern Hemisphere becomes relevant. As previous neutrino searches have strongly constrained neutrino production in GRBs, a new per-GRB analysis is introduced for the first time to discover neutrinos in coincidence with possibly rare neutrino-bright GRBs. A stacked analysis is also performed to discover a weak neutrino signal distributed over many GRBs. Results of this search are found to be consistent with atmospheric muon backgrounds. Combining this result with previously published searches for muon neutrino tracks in the Northern Hemisphere, cascade event searches over the entire sky, and an extension of the Northern Hemisphere track search in three additional years of IceCube data that is consistent with atmospheric backgrounds, the most stringent limits yet can be placed on prompt neutrino production in GRBs, which increasingly disfavor GRBs as primary sources of UHECRs in current GRB models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiation in the first days of supernova explosions contains rich information about physical properties of the exploding stars. In the past three years, I used the intermediate Palomar Transient Factory to conduct one-day cadence surveys, in order to systematically search for infant supernovae. I show that the one-day cadences in these surveys were strictly controlled, that the realtime image subtraction pipeline managed to deliver transient candidates within ten minutes of images being taken, and that we were able to undertake follow-up observations with a variety of telescopes within hours of transients being discovered. So far iPTF has discovered over a hundred supernovae within a few days of explosions, forty-nine of which were spectroscopically classified within twenty-four hours of discovery.

Our observations of infant Type Ia supernovae provide evidence for both the single-degenerate and double-degenerate progenitor channels. On the one hand, a low-velocity Type Ia supernova iPTF14atg revealed a strong ultraviolet pulse within four days of its explosion. I show that the pulse is consistent with the expected emission produced by collision between the supernova ejecta and a companion star, providing direct evidence for the single degenerate channel. By comparing the distinct early-phase light curves of iPTF14atg to an otherwise similar event iPTF14dpk, I show that the viewing angle dependence of the supernova-companion collision signature is probably responsible to the difference of the early light curves. I also show evidence for a dark period between the supernova explosion and the first light of the radioactively-powered light curve. On the other hand, a peculiar Type Ia supernova iPTF13asv revealed strong near-UV emission and absence of iron in the spectra within the first two weeks of explosion, suggesting a stratified ejecta structure with iron group elements confined to the slow-moving part of the ejecta. With its total ejecta mass estimated to exceed the Chandrasekhar limit, I show that the stratification and large mass of the ejecta favor the double-degenerate channel.

In a separate approach, iPTF found the first progenitor system of a Type Ib supernova iPTF13bvn in the pre-explosion HST archival mages. Independently, I used the early-phase optical observations of this supernova to constrain its progenitor radius to be no larger than several solar radii. I also used its early radio detections to derive a mass loss rate of 3e-5 solar mass per year for the progenitor right before the supernova explosion. These constraints on the physical properties of the iPTF13bvn progenitor provide a comprehensive data set to test Type Ib supernova theories. A recent HST revisit to the iPTF13bvn site two years after the supernova explosion has confirmed the progenitor system.

Moving forward, the next frontier in this area is to extend these single-object analyses to a large sample of infant supernovae. The upcoming Zwicky Transient Facility with its fast survey speed, which is expected to find one infant supernova every night, is well positioned to carry out this task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Short Baseline Neutrino Program at Fermilab aims to confirm or definitely rule out the existence of sterile neutrinos at the eV mass scale. The program will perform the most sensitive search in both the nue appearance and numu disappearance channels along the Booster Neutrino Beamline. The far detector, ICARUS-T600, is a high-granularity Liquid Argon Time Projection Chamber located at 600 m from the Booster neutrino source and at shallow depth, thus exposed to a large flux of cosmic particles. Additionally, ICARUS is located 6 degrees off axis with respect to the Neutrino beam from the Main Injector. This thesis presents the construction, installation and commissioning of the ICARUS Cosmic Ray Tagger system, providing a 4 pi coverage of the active liquid argon volume. By exploiting only the precise nanosecond scale synchronization of the cosmic tagger and the PMT optical flashes it is possible to determine if an event was likely triggered by a cosmic particle. The results show that using the Top Cosmic Ray Tagger alone a conservative rejection larger than 65% of the cosmic induced background can be achieved. Additionally, by requiring the absence of hits in the whole cosmic tagger system it is possible to perform a pre-selection of contained neutrino events ahead of the full event reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the focus is on utilizing metasurfaces to improve radiation characteristics of planar structures. The study encompasses various aspects of metasurface applications, including enhancing antenna radiation characteristics and manipulating electromagnetic (EM) waves, such as polarization conversion and anomalous reflection. The thesis introduces the design of a single-port antenna with dual-mode operation, integrating metasurfaces. This antenna serves as the front-end for a next-generation tag, functioning as a position sensor with identification and energy harvesting capabilities. It operates in the lower European Ultra-Wideband (UWB) frequency range for communication/localization and the UHF band for wireless energy reception. The design aims for a low-profile stack-up that remains unaffected by background materials. Researchers worldwide are drawn to metasurfaces due to their EM wave manipulation capabilities. The thesis also demonstrates how a High-Impedance Surface (HIS) can enhance the antenna's versatility through metasurface application, including conformal design using 3D-printing technology, ensuring adaptability for various deformation and tracking/powering scenarios. Additionally, the thesis explores two distinct metasurface applications. One involves designing an angularly stable super-wideband Circular Polarization Converter (CPC) operating from 11 to 35GHz with an impressive relative impedance bandwidth of 104.3%. The CPC shows a stable response even at oblique incidences up to 40 degrees, with a Peak Cross-Polarization Ratio (PCR) exceeding 62% across the entire band. The second application focuses on an Intelligent Reflective Surface (IRS) capable of redirecting incoming waves in unconventional directions. Tunability is achieved through an artificially developed ferroelectric material (HfZrO) and distributed capacitive elements (IDC) to fine-tune impedance and phase responses at the meta-atom level. The IRS demonstrates anomalous reflection for normal incident waves. These innovative applications of metasurfaces offer promising advancements in antenna design, EM wave manipulation, and versatile wireless communication systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis work, a cosmic-ray telescope was set up in the INFN laboratories in Bologna using smaller size replicas of CMS Drift Tubes chambers, called MiniDTs, to test and develop new electronics for the CMS Phase-2 upgrade. The MiniDTs were assembled in INFN National Laboratory in Legnaro, Italy. Scintillator tiles complete the telescope, providing a signal independent of the MiniDTs for offline analysis. The telescope readout is a test system for the CMS Phase-2 upgrade data acquisition design. The readout is based on the early prototype of a radiation-hard FPGA-based board developed for the High Luminosity LHC CMS upgrade, called On Board electronics for Drift Tubes. Once the set-up was operational, we developed an online monitor to display in real-time the most important observables to check the quality of the data acquisition. We performed an offline analysis of the collected data using a custom version of CMS software tools, which allowed us to estimate the time pedestal and drift velocity in each chamber, evaluate the efficiency of the different DT cells, and measure the space and time resolution of the telescope system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar radiation, especially ultraviolet A (UVA) and ultraviolet B (UVB), can cause damage to the human body, and exposure to the radiation may vary according to the geographical location, time of year and other factors. The effects of UVA and UVB radiation on organisms range from erythema formation, through tanning and reduced synthesis of macromolecules such as collagen and elastin, to carcinogenic DNA mutations. Some studies suggest that, in addition to the radiation emitted by the sun, artificial sources of radiation, such as commercial lamps, can also generate small amounts of UVA and UVB radiation. Depending on the source intensity and on the distance from the source, this radiation can be harmful to photosensitive individuals. In healthy subjects, the evidence on the danger of this radiation is still far from conclusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effectiveness of acupuncture in minimizing the severity of radiation-induced xerostomia in patients with head and neck cancer. A total of 24 consecutive patients receiving > 5000 cGy radiotherapy (RT) involving the major salivary glands bilaterally were assigned to either the preventive acupuncture group (PA, n = 12), treated with acupuncture before and during RT, or the control group (CT, n = 12), treated with RT and not receiving acupuncture. After RT completion, clinical response was assessed in all patients by syalometry, measuring the resting (RSFR) and stimulated (SSFR) salivary flow rates, and by the visual analogue scale (VAS) regarding dry mouth-related symptoms. Statistical analyses were performed with repeated-measures using a mixed-effect modeling procedure and analysis of variance. An alpha level of 0.05 was accepted for statistical significance. Although all patients exhibited some degree of impairment in salivary gland functioning after RT, significant differences were found between the groups. Patients in the PA group showed improved salivary flow rates (RSFR, SSFR; p < 0.001) and decreased xerostomia-related symptoms (VAS, p < 0.05) compared with patients in the CT group. Although PA treatment did not prevent the oral sequelae of RT completely, it significantly minimized the severity of radiation-induced xerostomia. The results suggest that acupuncture focused in a preventive approach can be a useful therapy in the management of patients with head and neck cancer undergoing RT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common side effect of radiotherapy used in the treatment of oral cancer is the occurrence of structural and physiological alterations of the salivary glands due to exposure to ionizing radiation, as demonstrated by conditions such as decreased salivary flow. The present study evaluated ultrastructural alterations in the parotid glands of rats receiving a fractionated dose (1,500-cGy) of radiation emitted by a Cesium-137 source and rats that were not subjected to ionizing radiation. After sacrifice, the parotid glands were removed and examined by transmission electron microscopy. Damage such as cytoplasmic vacuolization, dilatation of the endoplasmic reticulum and destruction of mitochondria, as well as damage to the cellular membrane of acinar cells, were observed. These findings lead to the conclusion that ionizing radiation promotes alterations in the glandular parenchyma, and that these alterations are directly related to the dose level of absorbed radiation. Certain phenomena that appear in the cytoplasm and nuclear material indicate that ionizing radiation causes acinar cell death (apoptosis).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the emission of gravitational radiation in the context of a previously studied metric nonsymmetric theory of gravitation. The part coming from the symmetric part of the metric coincides with the mass quadrupole moment result of general relativity. The one associated to the antisymmetric part of the metric involves the dipole moment of the fermionic charge of the system. The results are applied to binary star systems and the decrease of the period of the elliptical motion is calculated.