895 resultados para contraction musculaire statique
Resumo:
OBJECTIVE: To determine differences between hypermobile subjects and controls in terms of maximum strength, rate of force development, and balance. METHODS: We recruited 13 subjects with hypermobility and 18 controls. Rate of force development and maximal voluntary contraction (MVC) during single leg knee extension of the right knee were measured isometrically for each subject. Balance was tested twice on a force plate with 15-second single-leg stands on the right leg. Rate of force development (N/second) and MVC (N) were extracted from the force-time curve as maximal rate of force development (= limit Deltaforce/Deltatime) and the absolute maximal value, respectively. RESULTS: The hypermobile subjects showed a significantly higher value for rate of force development (15.2% higher; P = 0.038, P = 0.453, epsilon = 0.693) and rate of force development related to body weight (16.4% higher; P = 0.018, P = 0.601, epsilon = 0.834) than the controls. The groups did not differ significantly in MVC (P = 0.767, P = 0.136, epsilon = 0.065), and MVC related to body weight varied randomly between the groups (P = 0.921, P = 0.050, epsilon = 0.000). In balance testing, the mediolateral sway of the hypermobile subjects showed significantly higher values (11.6% higher; P = 0.034, P = 0.050, epsilon = 0.000) than that of controls, but there was no significant difference (4.9% difference; P = 0.953, P = 0.050, epsilon = 0.000) in anteroposterior sway between the 2 groups. CONCLUSION: Hypermobile women without acute symptoms or limitations in activities of daily life have a higher rate of force development in the knee extensors and a higher mediolateral sway than controls with normal joint mobility.
Resumo:
PURPOSE To report the incidence of anterior capsule contraction syndrome (ACCS) and to present a novel minimally invasive bimanual technique for anterior segment revision surgery associated with ACCS with anterior flexion of the intraocular lens haptics. METHODS A consecutive cohort of 268 eyes of 161 patients undergoing phacoemulsification and implantation of the same type of hydrophilic acrylic aspheric intraocular lens cohort were analysed and a novel technique of minimally invasive bimanual technique for anterior segment revision surgery is described. RESULTS We identified four eyes (1.5%) of three patients with advanced ACCS. Successful restoration of a clear visual axis with minimal induction of astigmatism and rapid visual rehabilitation was achieved in all four cases. CONCLUSION This technique is a safe and minimally invasive alternative to laser or vitrector-cut capsulotomy to restore a clear visual axis. In cases of advanced ACCS, it offers the option for haptic reposition or amputation.
Resumo:
Regulation of uterine quiescence involves the integration of the signaling pathways regulating uterine contraction and relaxation. Uterine contractants increase intracellular calcium through receptor/GαqPLC coupling, resulting in contraction of the myometrium. Elevation of cAMP concentration has been correlated with relaxation of the myometrium. However, the mechanism of cAMP action in the uterus is unclear. ^ Both endogenous and exogenous increases in cAMP inhibited oxytocin-stimulated phosphatidylinositide turnover in an immortalized pregnant human myometrial cell line (PHM1-41). This inhibition was reversed by cAMP-dependent protein kinase (PKA) inhibitors, suggesting the involvement of PKA. cAMP inhibited phosphatidyinositide turnover stimulated by different agonists in different cell lines. These data suggest that the cAMP inhibitory mechanism is neither cell nor receptor dependent, and inhibits Gαq/PLCβ1 and PLCβ3 coupling. ^ The subcellular localization of PKA occurs via PKA binding to A-Kinase-Anchoring-Proteins (AKAP), and peptides that inhibit this association have been developed (S-Ht31). S-Ht31 blocked cAMP-stimulated PKA activity and decreased PKA concentration in PHM1-41 cell plasma membranes. S-Ht31 reversed the ability of CPT-cAMP, forskolin and relaxin to inhibit phosphatidylinositide turnover in PHM1-41 cells. Overlay analysis of both PHM1-41 cell and nonpregnant rat myometrium found an AKAPs of 86 kDa and 150 kDa associated with the plasma membrane, respectively. These data suggest that PKA anchored to the plasma membrane via AKAP150/PKA anchoring is involved in the cAMP inhibitory mechanism. ^ CPT-cAMP and isoproterenol inhibited phosphatidylinositide turnover in rat myometrium from days 12 through 20 of gestation. In contrast, neither agent was effective in the 21 day pregnant rat myometrium. The decrease in the cAMP inhibitory mechanism was correlated with a decrease in PKA and an increase in protein phosphatase 2B (PP2B) concentration in rat myometrial plasma membranes on day 21 of gestation. In myometrial total cell homogenates, both PKA and PP2B concentration increased on day 21. S-Ht31 inhibited cAMP inhibition of phosphatidylinositide turnover in day 19 pregnant rat myometrium. Both PKA and PP2B coimmunoprecipitated with an AKAP150 in a gestational dependent manner, suggesting this AKAP localizes PKA and PP2B to the plasma membrane. ^ These data presented demonstrate the importance of the cAMP inhibitory mechanism in regulating uterine contractility. ^
Resumo:
The contraction of the actomyosin cytoskeleton, which is produced by the sliding of myosin II along actin filaments, drives important cellular activities such as cytokinesis and cell migration. To explain the contraction velocities observed in such physiological processes, we have studied the contraction of intact cytoskeletons of Dictyostelium discoideum cells after removing the plasma membrane using Triton X-100. The technique developed in this work allows for the quantitative measurement of contraction rates of individual cytoskeletons. The relationship of the contraction rates with forces was analyzed using three different myosins with different in vitro sliding velocities. The cytoskeletons containing these myosins were always contractile and the contraction rate was correlated with the sliding velocity of the myosins. However, the values of the contraction rate were two to three orders of magnitude slower than expected from the in vitro sliding velocities of the myosins, presumably due to internal and external resistive forces. The contraction process also depended on actin cross-linking proteins. The lack of α-actinin increased the contraction rate 2-fold and reduced the capacity of the cytoskeleton to retain internal materials, while the lack of filamin resulted in the ATP-dependent disruption of the cytoskeleton. Interestingly, the myosin-dependent contraction rate of intact contractile rings is also reportedly much slower than the in vitro sliding velocity of myosin, and is similar to the contraction rates of cytoskeletons (different by only 2–3 fold), suggesting that the contraction of intact cells and cytoskeletons is limited by common mechanisms.
Resumo:
It is widely conjectured that muscle shortens because portions of myosin molecules (the “cross-bridges”) impel the actin filament to which they transiently attach and that the impulses result from rotation of the cross-bridges. Crystallography indicates that a cross-bridge is articulated–consisting of a globular catalytic/actin-binding domain and a long lever arm that may rotate. Conveniently, a rhodamine probe with detectable attitude can be attached between the globular domain and the lever arm, enabling the observer to tell whether the anchoring region rotates. Well-established signature effects observed in shortening are tension changes resulting from the sudden release or quick stretch of active muscle fibers. In this investigation we found that closely correlated with such tension changes are changes in the attitude of the rhodamine probes. This correlation strongly supports the conjecture about how shortening is achieved.
Resumo:
Stress fibers were isolated from cultured human foreskin fibroblasts and bovine endothelial cells, and their contraction was demonstrated in vitro. Cells in culture dishes were first treated with a low-ionic-strength extraction solution and then further extracted using detergents. With gentle washes by pipetting, the nucleus and the apical part of cells were removed. The material on the culture dish was scraped, and the freed material was forced through a hypodermic needle and fractionated by sucrose gradient centrifugation. Isolated, free-floating stress fibers stained brightly with fluorescently labeled phalloidin. When stained with anti-α-actinin or anti-myosin, isolated stress fibers showed banded staining patterns. By electron microscopy, they consisted of bundles of microfilaments, and electron-dense areas were associated with them in a semiperiodic manner. By negative staining, isolated stress fibers often exhibited gentle twisting of microfilament bundles. Focal adhesion–associated proteins were also detected in the isolated stress fiber by both immunocytochemical and biochemical means. In the presence of Mg-ATP, isolated stress fibers shortened, on the average, to 23% of the initial length. The maximum velocity of shortening was several micrometers per second. Polystyrene beads on shortening isolated stress fibers rotated, indicating spiral contraction of stress fibers. Myosin regulatory light chain phosphorylation was detected in contracting stress fibers, and a myosin light chain kinase inhibitor, KT5926, inhibited isolated stress fiber contraction. Our study demonstrates that stress fibers can be isolated with no apparent loss of morphological features and that they are truly contractile organelle.
Resumo:
In biomolecular systems, the mechanical transfer of free energy occurs with both high efficiency and high speed. It is shown here that such a transfer can be achieved only if the participating free-energy-storing elements exhibit opposing relationships between their content of free energy and the force they exert in the transfer direction. A kinetic equilibrium of forces (KEF) results, in which the transfer of free energy is mediated essentially by thermal molecular motion. On the basis of present evidence, KEF is used as a guiding principle in developing a mechanical model of the crossbridge cycle in muscle contraction. The model allows the basic features of molecular events to be visualized in terms of plausible structures. Real understanding of the process will require identification of the elements that perform the functions described here. Besides chemomechanical energy transduction, KEF may have a role in other biomolecular processes in which free energy is transferred mechanically over large distances.
Resumo:
Signaling between cell membrane-bound L-type Ca2+ channels (LTCC) and ryanodine receptor Ca2+ release channels (RyR) on sarcoplasmic reticulum (SR) stores grades excitation–contraction coupling (ECC) in striated muscle. A physical connection regulates LTCC and RyR in skeletal muscle, but the molecular mechanism for coordinating LTCC and RyR in cardiomyocytes, where this physical link is absent, is unknown. Calmodulin kinase (CaMK) has characteristics suitable for an ECC coordinating molecule: it is activated by Ca2+/calmodulin, it regulates LTCC and RyR, and it is enriched in the vicinity of LTCC and RyR. Intact cardiomyocytes were studied under conditions where CaMK activity could be controlled independently of intracellular Ca2+ by using an engineered Ca2+-independent form of CaMK and a highly specific CaMK inhibitory peptide. CaMK reciprocally enhanced L-type Ca2+ current and reduced release of Ca2+ from the SR while increasing SR Ca2+ content. These findings support the hypothesis that CaMK is required to functionally couple LTCC and RyR during cardiac ECC.