933 resultados para consumer, control, demand, electrical energy, network, potential, response, shifting, vehicles
Resumo:
In Mobile Ad-hoc Networks (MANET) the participating nodes have several roles such as sender, receiver and router. Hence there is a lot of energy consumed by the nodes for the normal working of the network since each node has many different roles. Also in MANET the nodes keep moving constantly and this in turn consumes a lot of energy. Since battery capacity of these nodes is limited it fails to fulfil the high demand of energy. The scarcity of energy makes the energy conservation in mobile ad-hoc networks an important concern. There is several research carried out on the energy consumption of mobile ad-hoc networks these days. Some of this research suggests sleep mode, transmission power control, load balancing etc. In this thesis, we are comparing various proposed energy efficient models for some of the ad-hoc protocols. We compare different energy efficient models for Optimised Linked State Algorithm (OLSR) and Ad-hoc On Demand Distance Vector (AODV). The routing protocols are compared for different parameters such as average remaining energy, number of nodes alive, payload data received and performance with different mobility speed. The simulation results helps in benchmarking the various energy efficient routing models for OLSR and AODV protocols. The benchmarking of the routing protocols can be based on many factors but this thesis concentrates on benchmarking the MANET routing protocols mainly based on the energy efficiency and increased network lifetime.
Resumo:
In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.
Resumo:
There is an increasing demand for renewable energies due to the limited availability of fossil and nuclear fuels and due to growing environmental problems. Photovoltaic (PV) energy conversion has the potential to contribute significantly to the electrical energy generation in the future. Currently, the cost for photovoltaic systems is one of the main obstacles preventing production and application on a large scale. The photovoltaic research is now focused on the development of materials that will allow mass production without compromising on the conversion efficiencies. Among important selection criteria of PV material and in particular for thin films, are a suitable band gap, high absorption coefficient and reproducible deposition processes capable of large-volume and low cost production. The chalcopyrite semiconductor thin films such as Copper indium selenide and Copper indium sulphide are the materials that are being intensively investigated for lowering the cost of solar cells. Conversion efficiencies of 19 % have been reported for laboratory scale solar cell based on CuInSe2 and its alloys. The main objective of this thesis work is to optimise the growth conditions of materials suitable for the fabrication of solar cell, employing cost effective techniques. A typical heterojunction thin film solar cell consists of an absorber layer, buffer layer and transparent conducting contacts. The most appropriate techniques have been used for depositing these different layers, viz; chemical bath deposition for the window layer, flash evaporation and two-stage process for the absorber layer, and RF magnetron sputtering for the transparent conducting layer. Low cost experimental setups were fabricated for selenisation and sulphurisation experiments, and the magnetron gun for the RF sputtering was indigenously fabricated. The films thus grown were characterised using different tools. A powder X-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive X-ray analysis (EDX) and scanning electron microscopy i (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UV-Vis-NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using the two probe and four probe electrical measurements. Nature of conductivity of the films was determined by thermoprobe and thermopower measurements. The deposition conditions and the process parameters were optimised based on these characterisations.
Resumo:
In the present scenario of energy demand overtaking energy supply top priority is given for energy conservation programs and policies. Most of the process plants are operated on continuous basis and consumes large quantities of energy. Efficient management of process system can lead to energy savings, improved process efficiency, lesser operating and maintenance cost, and greater environmental safety. Reliability and maintainability of the system are usually considered at the design stage and is dependent on the system configuration. However, with the growing need for energy conservation, most of the existing process systems are either modified or are in a state of modification with a view for improving energy efficiency. Often these modifications result in a change in system configuration there by affecting the system reliability. It is important that system modifications for improving energy efficiency should not be at the cost of reliability. Any new proposal for improving the energy efficiency of the process or equipments should prove itself to be economically feasible for gaining acceptance for implementation. In order to arrive at the economic feasibility of the new proposal, the general trend is to compare the benefits that can be derived over the lifetime as well as the operating and maintenance costs with the investment to be made. Quite often it happens that the reliability aspects (or loss due to unavailability) are not taken into consideration. Plant availability is a critical factor for the economic performance evaluation of any process plant.The focus of the present work is to study the effect of system modification for improving energy efficiency on system reliability. A generalized model for the valuation of process system incorporating reliability is developed, which is used as a tool for the analysis. It can provide an awareness of the potential performance improvements of the process system and can be used to arrive at the change in process system value resulting from system modification. The model also arrives at the pay back of the modified system by taking reliability aspects also into consideration. It is also used to study the effect of various operating parameters on system value. The concept of breakeven availability is introduced and an algorithm for allocation of component reliabilities of the modified process system based on the breakeven system availability is also developed. The model was applied to various industrial situations.
Resumo:
Boolean input systems are in common used in the electric industry. Power supplies include such systems and the power converter represents these. For instance, in power electronics, the control variable are the switching ON and OFF of components as thyristors or transistors. The purpose of this paper is to use neural network (NN) to control continuous systems with Boolean inputs. This method is based on classification of system variations associated with input configurations. The classical supervised backpropagation algorithm is used to train the networks. The training of the artificial neural network and the control of Boolean input systems are presented. The design procedure of control systems is implemented on a nonlinear system. We apply those results to control an electrical system composed of an induction machine and its power converter.
Resumo:
Replacement and upgrading of assets in the electricity network requires financial investment for the distribution and transmission utilities. The replacement and upgrading of network assets also represents an emissions impact due to the carbon embodied in the materials used to manufacture network assets. This paper uses investment and asset data for the GB system for 2015-2023 to assess the suitability of using a proxy with peak demand data and network investment data to calculate the carbon impacts of network investments. The proxies are calculated on a regional basis and applied to calculate the embodied carbon associated with current network assets by DNO region. The proxies are also applied to peak demand data across the 2015-2023 period to estimate the expected levels of embodied carbon that will be associated with network investment during this period. The suitability of these proxies in different contexts are then discussed, along with initial scenario analysis to calculate the impact of avoiding or deferring network investments through distributed generation projects. The proxies were found to be effective in estimating the total embodied carbon of electricity system investment in order to compare investment strategies in different regions of the GB network.
Resumo:
In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.
Resumo:
Addressing building energy use is a pressing issue for building sector decision makers across Europe. In Sweden, some regions have adopted a target of reducing energy use in buildings by 50% until 2050. However, building codes currently do not support as ambitious objectives as these, and novel approaches to addressing energy use in buildings from a regional perspective are called for. The purpose of this licentiate thesis was to provide a deeper understanding of most relevant issues with regard to energy use in buildings from a broad perspective and to suggest pathways towards reaching the long-term savings objective. Current trends in building sector structure and energy use point to detached houses constructed before 1981 playing a key role in the energy transition, especially in the rural areas of Sweden. In the Swedish county of Dalarna, which was used as a study area in this thesis, these houses account for almost 70% of the residential heating demand. Building energy simulations of eight sample houses from county show that there is considerable techno-economic potential for energy savings in these houses, but not quite enough to reach the 50% savings objective. Two case studies from rural Sweden show that savings well beyond 50% are achievable, both when access to capital and use of high technology are granted and when they are not. However, on a broader scale both direct and indirect rebound effects will have to be expected, which calls for more refined approaches to energy savings. Furthermore, research has shown that the techno-economic potential is in fact never realised, not even in the most well-designed intervention programmes, due to the inherent complexity of human behaviour with respect to energy use. This is not taken account of in neither current nor previous Swedish energy use legislation. Therefore an approach that considers the technical prerequisites, economic aspects and the perspective of the many home owners, based on Community-Based Social Marketing methodology, is suggested as a way forward towards reaching the energy savings target.
Resumo:
This project verified the potential for the production of hydrogen via water electrolysis by using the exceeding electrical energy resultant from alcohol and sugar plants that use sugar cane bagasse as fuel. The studies were carried out in cogeneration plants authorized by the Electrical Energy National Agency (ANEEL). The processing history of sugar cane considered was based on the 2006/2007 harvests. The total bagasse produced, electrical energy generated and exceeding electrical energy in a year were calculated. It was obtained an average energy consumption value of 5.2 kWh Nm(-3) and the hydrogen production costs regarding the amount of sugar cane processed that ranged from US$ 0.50 to US$ 0.75 Nm(-3). The results pointed that the costs for the production of hydrogen via the bagasse exceeding energy are close to the production costs that use other sources of energy. As the energy generated from the bagasse is a renewable one, this alternative for the production of hydrogen is economical and environmentally viable. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The development of nations is an unquestionable requirement. A lot of challenges concerning health, education and economy are present. A discussion on these development models has occupied the minds of decision makers in recent years. When energy supply and demand is considered, the situation becomes critical and the crucial question is: how to improve the quality of life of developing countries based on available models of development that are related to the life style of developed countries, for which the necessary use and waste of energy are present? How much energy is essential to humanity for not so as to endangering the survival conditions of future generations? the human development index (HDI) establishes the relationship among energy use, economic growth and social growth. Here it can be seen that 75% of the world population has a significant energy consumption potential. This is a strong reason to consider that the sustainable development concepts on energy policies are strategic to the future of the planet. This paper deals with the importance of seeking alternative development models for human development balance, natural resources conservation and environment through rational energy use concepts. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An optimisation technique to solve transmission network expansion planning problem, using the AC model, is presented. This is a very complex mixed integer nonlinear programming problem. A constructive heuristic algorithm aimed at obtaining an excellent quality solution for this problem is presented. An interior point method is employed to solve nonlinear programming problems during the solution steps of the algorithm. Results of the tests, carried out with three electrical energy systems, show the capabilities of the method and also the viability of using the AC model to solve the problem.
Resumo:
Previous studies have indicated the importance of angiotensin II (ANG II) in skeletal muscle angiogenesis. The present study explored the effect of regulation of the renin gene on angiogenesis induced by electrical stimulation with the use of physiological, pharmacological, and genetic manipulations of the renin-angiotensin system (RAS). Transfer of the entire chromosome 13, containing the physiologically regulated renin gene, from the normotensive inbred Brown Norway (BN) rat into the background of an inbred substrain of the Dahl salt-sensitive (SS/Mcwi) rat restored renin levels and the angiogenic response after electrical stimulation. This restored response was significantly attenuated when SS-13BN/Mcwi consomic rats were treated with lisinopril or high-salt diet. The role of ANG II on this effect was confirmed by the complete restoration of skeletal muscle angiogenesis in SS/Mcwi rats infused with subpressor doses of ANG II. Congenic strains derived from the SS-13BN/Mcwi consomic were used to further verify the role of the renin gene in this response. Microvessel density was markedly increased after stimulation in congenic strains that contained the renin gene from the BN rat (congenic lines A and D). This angiogenic response was suppressed in control strains that carried regions of the BN genome just above (congenic line C) or just below (congenic line B) the renin gene. The present study emphasizes the importance of maintaining normal renin regulation as well as ANG II levels during the angiogenesis process with a combination of physiological, genetic, and pharmacological manipulation of the RAS.
Resumo:
The energy efficiency of buildings should be a goal at the pre-design phase, though the importance of the design variables is often neglected even during the design process. Highlighting the relevance of these design variables, this research studies the relationships of building location variables with the electrical energy consumption of residential units. The following building design parameters are considered: orientation, story height and sky view factor (SVF). The consideration of the SVF as a location variable contributes to the originality of this research. Data of electrical energy consumption and users' profiles were collected and several variables were considered for the development of an Artificial Neural Network model. This model allows the determination of the relative importance of each variable. The results show that the apartments' orientation is the most important design variable for the energy consumption, although the story height and the sky view factor play a fundamental role in that consumption too. We pointed out that building heights above twenty-four meters do not optimize the energy efficiency of the apartments and also that an increasing SVF can influence the energy consumption of an apartment according to their orientation.
Resumo:
Given that the total amount of losses in a distribution system is known, with a reliable methodology for the technical loss calculation, the non-technical losses can be obtained by subtraction. A usual method of calculation technical losses in the electric utilities uses two important factors: load factor and the loss factor. The load factor is usually obtained with energy and demand measurements, whereas, to compute the loss factor it is necessary the learning of demand and energy loss, which are not, in general, prone of direct measurements. In this work, a statistical analysis of this relationship using the curves of a sampling of consumers in a specific company is presented. These curves will be summarized in different bands of coefficient k. Then, it will be possible determine where each group of consumer has its major concentration of points. ©2008 IEEE.