963 resultados para confocal microscopy
Resumo:
PURPOSE: This study aimed to highlight structural corneal changes in a model of type 2 diabetes, using in vivo corneal confocal microscopy (CCM). The abnormalities were also characterized by transmission electron microscopy (TEM) and second harmonic generation (SHG) microscopy in rat and human corneas. METHODS: Goto-Kakizaki (GK) rats were observed at age 12 weeks (n = 3) and 1 year (n = 6), and compared to age-matched controls. After in vivo CCM examination, TEM and SHG microscopy were used to characterize the ultrastructure and the three-dimensional organization of the abnormalities. Human corneas from diabetic (n = 3) and nondiabetic (n = 3) patients were also included in the study. RESULTS: In the basal epithelium of GK rats, CCM revealed focal hyper-reflective areas, and histology showed proliferative cells with irregular basement membrane. In the anterior stroma, extracellular matrix modifications were detected by CCM and confirmed in histology. In the Descemet's membrane periphery of all the diabetic corneas, hyper-reflective deposits were highlighted using CCM and characterized as long-spacing collagen fibrils by TEM. SHG microscopy revealed these deposits with high contrast, allowing specific detection in diabetic human and rat corneas without preparation and characterization of their three-dimensional organization. CONCLUSION: Pathologic findings were observed early in the development of diabetes in GK rats. Similar abnormalities have been found in corneas from diabetic patients. TRANSLATIONAL RELEVANCE: This multidisciplinary study highlights diabetes-induced corneal abnormalities in an animal model, but also in diabetic donors. This could constitute a potential early marker for diagnosis of hyperglycemia-induced tissue changes.
Resumo:
The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the photocoagulation site and around it. Confocal microscopy demonstrates that the vessels throughout the path lesion are located within the neuroretina while in the choroid (after separation of the neural retina) only GFAP-positive but no lectin-positive cells can be seen. The involvement of infiltrating inflammatory cells in these remodeling and healing processes remained minimal throughout the study period. During the 4 weeks following krypton laser photocoagulation in the mouse eye, processes of wound healing and remodeling appear to be driven by cells (and vessels) originating from the retina.
Resumo:
Integrin adhesion receptors consist of non-covalently linked alpha and beta subunits each of which contains a large extracellular domain, a single transmembrane domain and a short cytoplasmic tail. Engaged integrins recruit to focal structures globally termed adhesion complexes. The cytoplasmic domain of the beta subunit is essential for this clustering. beta1 and beta3 integrins can recruit at distinct cellular locations (i.e. fibrillar adhesions vs focal adhesions, respectively) but it is not clear whether individual beta subunit cytoplasmic and transmembrane domains are by themselves sufficient to drive orthotopic targeting to the cognate adhesion complex. To address this question, we expressed full-length beta3 transmembrane anchored cytoplasmic domains and truncated beta3 cytoplasmic domains as GFP-fusion constructs and monitored their localization in endothelial cells. Membrane-anchored full-length beta3 cytoplasmic domain and a beta3 mutant lacking the NXXY motif recruited to adhesion complexes, while beta3 mutants lacking the NPXY and NXXY motifs or the transmembrane domain did not. Replacing the natural beta subunit transmembrane domain with an unrelated (i.e. HLA-A2 alpha chain) transmembrane domain significantly reduced recruitment to adhesion complexes. Transmembrane anchored beta3 and cytoplasmic domain constructs, however, recruited without discrimination to beta1- and beta3-rich adhesions complexes. These findings demonstrate that membrane anchorage and the NPXY (but not the NXXY) motif are necessary for beta3 cytoplasmic domain recruitment to adhesion complexes and that the natural transmembrane domain actively contributes to this recruitment. The beta3 transmembrane and cytoplasmic domains alone are insufficient for orthotopic recruitment to cognate adhesion complexes.
Resumo:
BACKGROUND: Adult neurogenesis occurs in the hippocampus of most mammals, including humans, and plays an important role in hippocampal-dependent learning. This process is highly regulated by neuronal activity and might therefore be vulnerable to anesthesia. In this article, the authors investigated this possibility by evaluating the impact of propofol anesthesia on mouse hippocampal neurons generated during adulthood, at two functionally distinct maturational stages of their development. METHODS: Adult-born hippocampal neurons were identified using the cell proliferation marker bromodeoxyuridine or a retroviral vector expressing the green fluorescent protein in dividing cells and their progenies. Eleven or 17 days after the labeling procedure, animals (n = 3-5 animals per group) underwent a 6-h-long propofol anesthesia. Twenty-one days after labeling, the authors analyzed the survival, differentiation, and morphologic maturation of adult-born neurons using confocal microscopy. RESULTS: Propofol impaired the survival and maturation of adult-born neurons in an age-dependent manner. Anesthesia induced a significant decrease in the survival of neurons that were 17 days old at the time of anesthesia, but not of neurons that were 11 days old. Similarly, propofol anesthesia significantly reduced the dendritic maturation of neurons generated 17 days before anesthesia, without interfering with the maturation of neurons generated 11 days before anesthesia. CONCLUSIONS: These results reveal that propofol impairs the survival and maturation of adult-born hippocampal neurons in a developmental stage-dependent manner in mice.
Resumo:
PURPOSE: To study the kinetics of polylactide (PLA) nanoparticle (NP) localization within the intraocular tissues and to evaluate their potential to release encapsulated material. METHODS: A single intravitreous injection (5 micro L) of an NP suspension (2.2 mg/mL) encapsulating either Rh-6G (Rh) or Nile red (Nr) was performed. Animals were killed at various times, and the NPs localization within the intraocular tissues was studied by environmental scanning electron microscopy (ESEM), confocal microscopy, light microscopy histology, fluorescence microscopy, and immunohistochemistry. Eyes injected with blank NPs, free Rh, or PBS solution were used as the control. RESULTS: ESEM showed the flow of the NPs from the site of injection into the vitreous cavity and their rapid settling on the internal limiting membrane. Histology demonstrated the anatomic integrity of the injected eyes and showed no toxic effects. A mild inflammatory cell infiltrate was observed in the ciliary body 6 hours after the injection and in the posterior vitreous and retina at 18 to 24 hours. The intensity of inflammation decreased markedly by 48 hours. Confocal and fluorescence microscopy and immunohistochemistry showed that a transretinal movement of the NPs was gradually taking place with a later localization in the RPE cells. Rh encapsulated within the injected NPs diffused and stained the retina and RPE cells. PLA NPs were still present within the RPE cells 4 months after a single intravitreous injection. CONCLUSIONS: Intravitreous injection of PLA NPs appears to result in transretinal movement, with a preferential localization in the RPE cells. Encapsulated Rh diffuses from the NPs and stains the neuroretina and the RPE cells. The findings support the idea that specific targeting of these tissues is feasible. Furthermore, the presence of the NPs within the RPE cells 4 months after a single injection shows that a steady and continuous delivery of drugs can be achieved.
Resumo:
The distribution of three nuclear scaffold proteins (of which one is a component of a particular class of nuclear bodies) has been studied in intact K562 human erythroleukemia cells, isolated nuclei, and nuclear scaffolds. Nuclear scaffolds were obtained by extraction with the ionic detergent lithium diidosalicylate (LIS), using nuclei prepared in the absence of divalent cations (metal-depleted nuclei) and stabilized either by a brief heat exposure (20 min at 37C or 42C) or by Cu++ ions at 0C. Proteins were visualized by in situ immunocytochemistry and confocal microscopy. Only a 160-kD nuclear scaffold protein was unaffected by all the stabilization procedures performed on isolated nuclei. However, LIS extraction and scaffold preparation procedures markedly modified the distribution of the polypeptide seen in intact cells, unless stabilization had been performed by Cu++. In isolated nuclei, only Cu++ treatment preserved the original distribution of the two other antigens (M(r), 125 and 126 kD), whereas in heat-stabilized nuclei we detected dramatic changes. In nuclear scaffolds reacted with antibodies to 125 and 126-kD proteins, the fluorescent pattern was always disarranged regardless of the stabilization procedure. These results, obtained with nuclei prepared in the absence of Mg+2 ions, indicate that heat treatment per se can induce changes in the distribution of nuclear proteins, at variance with previous suggestions. Nevertheless, each of the proteins we have studied behaves in a different way, possibly because of its specific association with the nuclear scaffold.
Resumo:
The role of PIP(2) in pancreatic beta cell function was examined here using the beta cell line MIN6B1. Blocking PIP(2) with PH-PLC-GFP or PIP5KIgamma RNAi did not impact on glucose-stimulated secretion although susceptibility to apoptosis was increased. Over-expression of PIP5KIgamma improved cell survival and inhibited secretion with accumulation of endocytic vacuoles containing F-actin, PIP(2), transferrin receptor, caveolin 1, Arf6 and the insulin granule membrane protein phogrin but not insulin. Expression of constitutively active Arf6 Q67L also resulted in vacuole formation and inhibition of secretion, which was reversed by PH-PLC-GFP co-expression. PIP(2) co-localized with gelsolin and F-actin, and gelsolin co-expression partially reversed the secretory defect of PIP5KIgamma-over-expressing cells. RhoA/ROCK inhibition increased actin depolymerization and secretion, which was prevented by over-expressing PIP5KIgamma, while blocking PIP(2) reduced constitutively active RhoA V14-induced F-actin polymerization. In conclusion, although PIP(2) plays a pro-survival role in MIN6B1 cells, excessive PIP(2) production because of PIP5KIgamma over-expression inhibits secretion because of both a defective Arf6/PIP5KIgamma-dependent endocytic recycling of secretory membrane and secretory membrane components such as phogrin and the RhoA/ROCK/PIP5KIgamma-dependent perturbation of F-actin cytoskeleton remodelling.
Resumo:
Bcl10, a caspase recruitment domain (CARD)-containing protein identified from a breakpoint in mucosa-associated lymphoid tissue (MALT) B lymphomas, is essential for antigen-receptor-mediated nuclear factor kappaB (NF-kappaB) activation in lymphocytes. We have identified a novel CARD-containing protein and interaction partner of Bcl10, named Carma1. Carma1 is predominantly expressed in lymphocytes and represents a new member of the membrane-associated guanylate kinase family. Carma1 binds Bcl10 via its CARD motif and induces translocation of Bcl10 from the cytoplasm into perinuclear structures. Moreover, expression of Carma1 induces phosphorylation of Bcl10 and activation of the transcription factor NF-kappaB. We propose that Carma1 is a crucial component of a novel Bcl10-dependent signaling pathway in T-cells that leads to the activation of NF-kappaB.
Resumo:
This study addressed the contribution of acidic sphingomyelinase (ASMase) in TNF-alpha-mediated hepatocellular apoptosis. Cultured hepatocytes depleted of mitochondrial glutathione (mGSH) became sensitive to TNF-alpha, undergoing a time-dependent apoptotic cell death preceded by mitochondrial membrane depolarization, cytochrome c release, and caspase activation. Cyclosporin A treatment rescued mGSH-depleted hepatocytes from TNF-alpha-induced cell death. In contrast, mGSH-depleted hepatocytes deficient in ASMase were resistant to TNF-alpha-mediated cell death but sensitive to exogenous ASMase. Furthermore, although in vivo administration of TNF-alpha or LPS to galactosamine-pretreated ASMase(+/+) mice caused liver damage, ASMase(-/-) mice exhibited minimal hepatocellular injury. To analyze the requirement of ASMase, we assessed the effect of glucosylceramide synthetase inhibition on TNF-alpha-mediated apoptosis. This approach, which blunted glycosphingolipid generation by TNF-alpha, protected mGSH-depleted ASMase(+/+) hepatocytes from TNF-alpha despite enhancement of TNF-alpha-stimulated ceramide formation. To further test the involvement of glycosphingolipids, we focused on ganglioside GD3 (GD3) because of its emerging role in apoptosis through interaction with mitochondria. Analysis of the cellular redistribution of GD3 by laser scanning confocal microscopy revealed the targeting of GD3 to mitochondria in ASMase(+/+) but not in ASMase(-/-) hepatocytes. However, treatment of ASMase(-/-) hepatocytes with exogenous ASMase induced the colocalization of GD3 and mitochondria. Thus, ASMase contributes to TNF-alpha-induced hepatocellular apoptosis by promoting the mitochondrial targeting of glycosphingolipids.
Resumo:
The last decade has presented studies providing evidence for astrocytic exocytosis of glutamate potentiating nerve signals. To make further investigations into this astrocytic attribute we investigated the localization of the vesicular glutamate transporter 1 (VGLUT1) in small processes of astrocytes close to glutamatergic terminals in frontal cortex, striatum, molecular layer of hippocampus and stratum radiatum of hippocampus. According to the importance of VGLUT1 in glutamate exocytosis the presence of VGLUT1 in astrocytic processes indicates the ability to exocytose glutamate. METHODS: For qualitative analysis we used immunoflourescence histochemistry. Sections from rat frontal cortex, striatum, molecular layer of hippocampus and stratum radiatum of hippocampus were labeled with antibodies against glutamine synthetase (an astrocytic marker) and VGLUT1. Z-stacks of 4.5-5 lm obtained by confocal microscopy from each section were deconvolved and 3D reconstructed in Amira. Small astrocytic processes were analysed for the presence of VGLUT1 inside the processes. The quantitative analysis was done by immunogold labeling. Ultrathin sections from each brain region were labeled for GLT (an astrocytic marker) and VGLUT1. Pictures obtained by electron microscopy were analysed and the point density (gold particles/nm2) for VGLUT1 in astrocytic processes was measured. RESULTS: Using confocal 3D reconstructions we were qualitatively able to identify VGLUT1 within small processes of astrocytes in all four brain regions. Reflecting our qualitative findings the electron microscopical immunogold quantifications showed a significant density of gold particles signaling VGLUT1 in astrocytic processes in all four brain regions. CONCLUSION: We extend the results of previous studies on glutamate release from astrocytes, which have focused on the hippocampus, proposing that astrocytic exocytosis of glutamate is a global phenomenon in the brain.
Resumo:
Glial fibrillary acidic protein, GFAP, is a major intermediate filament protein of glial cells and major cytoskeletal structure in astrocytes. The entorhinal cortex has a key role in memory function and is one of the first brain areas to reveal hallmark structures of Alzheimer's disease and therefore provides an ideal tissue to investigate incipient neurodegenerative changes. Here we have analyzed age- and disease-related occurrence and composition of GFAP in the human entorhinal cortex by using one- and two-dimensional electrophoresis, Western blots and immunocytochemistry combined with confocal microscopy. A novel monoclonal antibody, GF-02, was characterized that mainly reacted with intact GFAP molecules and indicated that more acidic and soluble GFAP forms were also more susceptible to degradation. GFAP and vimentin increased with aging and in Alzheimer's disease (AD). Two-dimensional electrophoresis and Western blots revealed a complex GFAP pattern, both in aging and AD with different modification and degradation forms. Immunohistochemistry indicated that reactive astrocytes mainly accumulated in relation to neurofibrillary tangles and senile plaques in deeper entorhinal cortex layers. GFAP may be used as an additional but not exclusive diagnostic tool in the evaluation of neurodegenerative diseases because its levels change with age and respond to senile plaque and tangle formation.
Resumo:
Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.
Resumo:
The filamentous brain lesions that define Alzheimer disease (AD) consist of senile plaques and neurofibrillary tangles. Undulated pathological filaments--curly fibers or neuropil threads--also occur in the neuropil. Beta-amyloid precursor proteins are synthesized by many cells outside the central nervous system and recently, deposition of beta-amyloid-protein was reported to occur in non-neuronal tissues. In addition, increasing data claim the importance of chronic inflammation in the pathogenesis of AD. These observations suggest that AD may be a widespread systemic disorder. Here we report that pathological argyrophilic filaments with histochemical properties of amyloid showing striking morphological similarity to curly fibers and/or tangles accumulate not only in ependymal layer and in epithelial cells of choroid plexus, but also in several other organs (e.g. liver, pancreas, ovary, testis, thyroid) in AD. The ependyma, choroid plexus, and various organs of 39 autopsy cases were analyzed. In search of curly fiber and tangle-like changes in organs other than brain, 395 blocks from 21 different tissues of 24 AD cases, 5 cases with discrete or moderate AD-type changes, and 10 control cases were investigated. We found in non-neuronal cells "curly fibers" or "tangles" immunoreactive with antibodies to P component, Tau-protein, ubiquitin, fibronectin, and Apolipoprotein-E, but lacking immunoreactivity with antibodies to neurofilament proteins. Ultrastructurally they consist of densely packed straight and paired helical filaments and closely resemble neurofibrillary tangles and neuropil threads. These observations indicate that the formation of "curly fibers" and "tangles" is not unique to the central nervous system. The results suggest that AD might be a systemic disorder or that similar fibrillary changes to tangles and curly fibers may also be associated with other amyloidosis than beta-amyloidosis. Further investigations are necessary to understand the pathogenetic interest of these fibrillary changes outside the CNS.
Resumo:
In this present thesis Superparamagnetic Iron Oxide Nanoparticles (SPIONs) with 9 nm in diameter were selected as nanocarriers in order to study their potential application as drug delivery systems. Therefore the aim of the study was to demonstrate the proof of concept by establishing an efficient system of drug delivery, which would be a valuable tool in biomedical applications, such as the treatement of cancer, by reducing the side effects due to administration of a high concentration of therapeutic agents. As demonstrated in a previous study, the uptake of SPIONs by tumoral human cells was enhanced by the presence of amino groups on their surface. The stabilization of SPIONs were then performed and optimized by the coating of poly(vinylalcohol) and poly(vinylalcohol/vinylamine). Such nanoparticles were known as aminoPVA-SPIONs. The toxicity and the inflammatory reaction of aminoPVA-SPIONs were evaluated in order to establish their potentiel use in the human body. The results demonstrated that the human cells were able to invaginate aminoPVA-SPIONS without revealing any toxicity and inflammatory reaction. The analysis by transmission electron microscopy (TEM), scanning electron microscopy (SEM), cryo-TEM, confocal microscopy and histological staining (i.e. Prussian Blue) showed that the iron oxide core of SPIONs were located in the cytoplasm of cells and concentrated in vesicles. The evaluation of the mechanism of uptake of aminoPVA-SPIONs revealed that their uptake by monolayer cell culture was performed via an active mechanism, which was achieved by a clathrin-mediated endocytosis. Consequently, it was suggested that aminoPVA-SPIONs were good candidates as nanocarriers in drug delivery systems, which were able to reach the cytoplasm of cells. Their incubation with three-dimensional models mimicing tissues, such as differentiated rat brain cell-derived aggregates and spheroids, revealed that aminoPVA-SPIONs were able to invade into deep cell layers according to the stage of growth of these models. In the view of these promising results, drug-SPIONs were prepared by the functionalization of aminoPVA-SPIONs via a biological labile chemical bond by one of these three antineoplastic agents, which are widely used in clinical practice: 5-fluorourdine (Fur) (an antimetabolite), or camptothecin (CPT) (a topoisomerase inhibitor) or doxorubicin (DOX) (an anthracycline which interfere with DNA). The results shown that drug-SPIONs were internalized by human melanoma cells, as it was expected due the previous results with aminoPVA-SPIONs, and in addition they were active as anticancer agents, suggesting the efficient release of the drug from the drug-SPIONs. The results with CPT-SPIONs were the most promising, whereas DOX- SPIONs did not demonstrate a prononced activity of DOX. In conclusion, the results demonstrated that functionalized iron oxide nanoparticles are a promising tool in order to deliver therapeutic agents. - Dans le cadre de ce travail de thèse, les nanoparticules superparamagnétiques d'oxyde de fer (SPIONs) ayant un diamètre de 9 nm ont été choisies, afin d'étudier leur éventuelle utilisation dans un système de délivrance d'agents thérapeutiques. Ainsi le but de la thèse est de démontrer la faisabilité de fabriquer un système efficace de délivrance d'agents thérapeutiques, qui serait un outil intéressant dans le cadre d'une utilisation biomédicale, par exemple lors du traitement du cancer, qui pourrait réduire les effets secondaires provoqués par le dosage trop élevé de médicaments. Comme il a été démontré dans une précédente étude, l'invagination des SPIONs par des cellules humaines cancéreuses est améliorée par la présence de groupes fonctionnels amino à leur surface. La stabilisation des SPIONs est ainsi effectuée et optimisée par l'enrobage de poly(vinylalcool) et de (poly(vinylalcool/vinylamine), qui sont connues sous le nom de aminoPVA-SPIONs. La toxicité et la réaction inflammatoire des aminoPVA-SPIONs ont été évaluées dans le but de déterminer leur potentielle utilisation dans le corps humain. Les résultats démontrèrent que les cellules humaines sont capables d'invaginer les aminoPVAS-SPIONs sans induire une réaction toxique ou inflammatoire. L'analyse par la microscopie électronique en transmission électronique (TEM), la microscopie électronique à balayage (SEM), le cryo-microscopie électronique (SEM), la microscopie confocale et la coloration histologique (par ex, le bleu de Prusse) a montré que l'oxyde de fer des SPIONs est localisé dans le cytoplasme des cellules et est concentré dans des vesicules. L'évaluation du méchanisme d'invagination des aminoPVA-SPIONs ont révélé que leur invagination par des monocultures de cellules est effectué par un méchanisme actif, contrôlé par une endocytose induite par les clathrins. Par conséquent, les aminoPVA-SPIONs sont de bons candidats en tant que transporteurs (nanocamers) dans un système de délivrance d'agents thérapeuthique, capable d'atteindre le cytoplasme des cellules. Leur incubation avec des modèles tridimenstionnels imitant les tissues, tels que les aggrégats de cellules de cerveau différenciées et les sphéroïdes, a montré que les aminoPVA-SPIONs sont capable de pénétrer dans les couches profondes des modèles, selon l'état d'avancement de leur croissance. En vue de ces résultats prometteurs, les drug-SPIONs ont été préparés en fonctionalisant les aminoPVA-SPIONs par le biai d'une liaison chimique labile par un des trois agents thérapeutiques, déjà utilisé en pratique : 5-fluorourdine (Fur) (un antimétabolite), or camptothecin (CPT) (un inhibiteur de la topoisomerase) or doxorubicin (DOX) (un anthracycline qui interfère avec le DNA). Les résultats ont montré que les drug-SPIONs sont capable d'être internalisés par les mélanomes, comme il a été attendu d'après les résultats obtenus précédemment avec les aminoPVA-SPIONs, et de plus, les drug-SPIONs sont actifs, ce qui suggère un relargage efficace de l'agent thérapeutique du drug-SPIONs. Les résultats obtenus avec les CPT-SPIONs sont les plus prometteurs, tandis que ceux avec les DOX-SPIONs, ce n'est pas le cas, dont l'activité thérapeutique de DOX n'a pas été aussi efficace. En conclusion, les résultats ont pu démontrer que les nanoparticules d'oxyde de fer fonctionnalisées sont un outil prometteur dans la délivrance d'agents thérapeutiques.
Resumo:
Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.