956 resultados para conditional CAPM
Resumo:
Notch proteins influence cell-fate decisions in many developmental systems. Gain-of-function studies have suggested a crucial role for Notch1 signaling at several stages during lymphocyte development, including the B/T, alphabeta/gammadelta and CD4/CD8 lineage choices. Here, we critically re-evaluate these conclusions in the light of recent studies that describe inducible and tissue-specific targeting of the Notch1 gene.
Resumo:
Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
Let 'epsilon' be a class of event. Conditionally Expected Utility decision makers are decision makers whose conditional preferences ≿E, E є 'epsilon', satisfy the axioms of Subjective Expected Utility theory (SEU). We extend the notion of unconditional preference that is conditionally EU to unconditional preferences that are not necessarily SEU. We give a representation theorem for a class of such preferences, and show that they are Invariant Bi-separable in the sense of Ghirardato et al.[7]. Then, we consider the special case where the unconditional preference is itself SEU, and compare our results with those of Fishburn [6].
Resumo:
L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.
Resumo:
In this article, we study reliability measures such as geometric vitality function and conditional Shannon’s measures of uncertainty proposed by Ebrahimi (1996) and Sankaran and Gupta (1999), respectively, for the doubly (interval) truncated random variables. In survival analysis and reliability engineering, these measures play a significant role in studying the various characteristics of a system/component when it fails between two time points. The interrelationships among these uncertainty measures for various distributions are derived and proved characterization theorems arising out of them
Characterizations of Bivariate Models Using Some Dynamic Conditional Information Divergence Measures
Resumo:
In this article, we study some relevant information divergence measures viz. Renyi divergence and Kerridge’s inaccuracy measures. These measures are extended to conditionally specifiedmodels and they are used to characterize some bivariate distributions using the concepts of weighted and proportional hazard rate models. Moreover, some bounds are obtained for these measures using the likelihood ratio order
Resumo:
Seit Etablierung der ersten Börsen als Marktplatz für fungible Güter sind Marktteilnehmer und die Wissenschaft bemüht, Erklärungen für das Zustandekommen von Marktpreisen zu finden. Im Laufe der Zeit wurden diverse Modelle entwickelt. Allen voran ist das neoklassische Capital Asset Pricing Modell (CAPM) zu nennen. Die Neoklassik sieht den Akteur an den Finanzmärkten als emotionslosen und streng rationalen Entscheider, dem sog. homo oeconomicus. Psychologische Einflussfaktoren bei der Preisbildung bleiben unbeachtet. Mit der Behavioral Finance hat sich ein neuer Zweig zur Erklärung von Börsenkursen und deren Bewegungen entwickelt. Die Behavioral Finance sprengt die enge Sichtweise der Neoklassik und geht davon aus, dass psychologische Effekte die Entscheidung der Finanzakteure beeinflussen und dabei zu teilweise irrational und emotional geprägten Kursänderungen führen. Eines der Hauptprobleme der Behavioral Finance liegt allerdings in der fehlenden formellen Ermittelbarkeit und Testbarkeit der einzelnen psychologischen Effekte. Anders als beim CAPM, wo die einzelnen Parameter klar mathematisch bestimmbar sind, besteht die Behavioral Finance im Wesentlichen aus psychologischen Definitionen von kursbeeinflussenden Effekten. Die genaue Wirkrichtung und Intensität der Effekte kann, mangels geeigneter Modelle, nicht ermittelt werden. Ziel der Arbeit ist es, eine Abwandlung des CAPM zu ermitteln, die es ermöglicht, neoklassische Annahmen durch die Erkenntnisse des Behavioral Finance zu ergänzen. Mittels der technischen Analyse von Marktpreisen wird versucht die Effekte der Behavioral Finance formell darstellbar und berechenbar zu machen. Von Praktikern wird die technische Analyse dazu verwendet, aus Kursverläufen die Stimmungen und Intentionen der Marktteilnehmer abzuleiten. Eine wissenschaftliche Fundierung ist bislang unterblieben. Ausgehend von den Erkenntnissen der Behavioral Finance und der technischen Analyse wird das klassische CAPM um psychologische Faktoren ergänzt, indem ein Multi-Beta-CAPM (Behavioral-Finance-CAPM) definiert wird, in das psychologisch fundierte Parameter der technischen Analyse einfließen. In Anlehnung an den CAPM-Test von FAMA und FRENCH (1992) werden das klassische CAPM und das Behavioral-Finance-CAPM getestet und der psychologische Erklärungsgehalt der technischen Analyse untersucht. Im Untersuchungszeitraum kann dem Behavioral-Finance-CAPM ein deutlich höherer Erklärungsgehalt gegenüber dem klassischen CAPM zugesprochen werden.
Resumo:
The biplot has proved to be a powerful descriptive and analytical tool in many areas of applications of statistics. For compositional data the necessary theoretical adaptation has been provided, with illustrative applications, by Aitchison (1990) and Aitchison and Greenacre (2002). These papers were restricted to the interpretation of simple compositional data sets. In many situations the problem has to be described in some form of conditional modelling. For example, in a clinical trial where interest is in how patients’ steroid metabolite compositions may change as a result of different treatment regimes, interest is in relating the compositions after treatment to the compositions before treatment and the nature of the treatments applied. To study this through a biplot technique requires the development of some form of conditional compositional biplot. This is the purpose of this paper. We choose as a motivating application an analysis of the 1992 US President ial Election, where interest may be in how the three-part composition, the percentage division among the three candidates - Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethnic composition and on the urban-rural composition of the state. The methodology of conditional compositional biplots is first developed and a detailed interpretation of the 1992 US Presidential Election provided. We use a second application involving the conditional variability of tektite mineral compositions with respect to major oxide compositions to demonstrate some hazards of simplistic interpretation of biplots. Finally we conjecture on further possible applications of conditional compositional biplots
Resumo:
La existencia de memoria de largo plazo en las series financieras implica que los retornos de un activo hoy pueden tener incidencia sobre los retornos futuros, incluso más allá del corto plazo. En presencia de dicha memoria el horizonte de inversión elegido puede resultar en diferentes condiciones de riesgo para el inversionista. Peters (1989 y 1992), Mandelbrot (1972), León y Vivas (2010), entre otros, encuentran evidencia de dependencia de largo plazo de las series de tiempo financieras y muestran sus principales implicaciones. Este documento se ocupa de extender el análisis al uso del supuesto de neutralidad del horizonte de tiempo en el CAPM, estimando el efecto cuantitativo de la existencia de dependencia de largo plazo en este modelo según lo desarrollado por Greene y Fieltz (1980). Los resultados para una muestra de acciones colombianas y estadounidenses muestran que la distribución de la medida del riesgo sistémico en el modelo, el beta, es estadísticamente diferente cuando se incorpora el efecto de dependencia de largo plazo; por lo tanto, los retornos esperados de estas acciones cambian. En el mercado colombiano se observa una sobreestimación del beta cuando no se realiza el ajuste propuesto, mientras que en las acciones estadounidenses analizadas el beta sin el ajuste se encuentra subestimado. En cuanto a los retornos esperados, estos son sobrevalorados al no tener en cuenta el ajuste por dependencia de largo plazo, tanto en las acciones colombianas como en las estadounidenses.
Resumo:
We investigate the effect of education Conditional Cash Transfer programs (CCTs) on teenage pregnancy. Our main concern is with how the size and sign of the effect may depend on the design of the program. Using a simple model we show that an education CCT that conditions renewal on school performance reduces teenage pregnancy; the program can increase teenage pregnancy if it does not condition on school performance. Then, using an original data base, we estimate the causal impact on teenage pregnancy of two education CCTs implemented in Bogot´a (Subsidio Educativo, SE, and Familias en Acci´on, FA); both programs differ particularly on whether school success is a condition for renewal or not. We show that SE has negative average effect on teenage pregnancy while FA has a null average effect. We also find that SE has either null or no effect for adolescents in all age and grade groups while FA has positive, null or negative effects for adolescents in different age and grade groups. Since SE conditions renewal on school success and FA does not, we can argue that the empirical results are consistent with the predictions of our model and that conditioning renewal of the subsidy on school success crucially determines the effect of the subsidy on teenage pregnancy
Resumo:
In this paper we reviewed the models of volatility for a group of five Latin American countries, mainly motivated by the recent periods of financial turbulence. Our results based on high frequency data suggest that Dynamic multivariate models are more powerful to study the volatilities of asset returns than Constant Conditional Correlation models. For the group of countries included, we identified that domestic volatilities of asset markets have been increasing; but the co-volatility of the region is still moderate.