898 resultados para composite material


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, were produced ceramic matrix composites based in SiCxOy e Al2O3 reinforced with NbC, by hydrosilylation reaction between D4Vi and poly(methylhydrosiloxane) mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. After the mixture and compactation at 80ºC (warm pressing), the samples were pyrolised at 1200 and 1400ºC and infiltred with ICZ and LZSA respectively, and thermically, physical and structurally characterized by X-ray diffraction, density and porosity, flexural mechanical strength and fracture surface by scanning electron microscopy. The yield ceramic obtained after pyrolysis for studied composition at 1200ºC was 95%. The obtained phases had been identified as being Al3Nb, NbSi2 and NbC. The composite material presented apparent porosity varying of 15 up to 32% and mechanical flexural strenght of 32 up to 37,5MPa. After the fracture surface analysis, were observed a phases homogeneous dispersion, with some domains of amorphous and crystalline aspect. The samples that were submitted the infiltration cycle presented a layer next the surface with reduced pores number in relation to the total volume

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present two models of blocks made of composite material obtained from the use of cement, plaster, EPS crushed, shredded tire, mud, sand and water, for the construction of popular housing. Were made metal molds for the manufacture of blocks to be used in the construction of a residence for low-income families. Performed tests of compressive strength of the composite for various formulations that met the specific standard for blocks used in construction. To study the thermal conductivity of the composite for further study of thermal comfort generated in a residence built with the proposed composite. We also determined the mass-specific and water absorption for each formulation studied. Using a home already built with another composite material, made up the closing of a window with the building blocks and found the thermal insulation, measuring external and internal temperatures of the blocks. The blocks had made good thermal insulation of the environment, resulting in differences of up to 12.6°C between the outer and inner faces. It will be shown the feasibility of using composite for the end proposed and chosen the most appropriate wording

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With a view to revitalizing public environments through criteria that include economy, tourism, aesthetics and respect for the environment, this paper proposes a model of kiosk manufactured with composite material blocks, to be employed as a public instrument. . The model consists of a structure composed of planned blocks and manufactured in cement-based composite, gypsum, ground and water, having the styrofoam inside filled with pet bottles of 500 ml dose. The social and environmental issue is the critical point of the work when it can, through the reuse of environmentally harmful materials such as polyethylene terephthalate PET, using such modules for the construction of various areas of Commerce, promoting the protection of the environment combined with the improvement of the quality of life of the population. The tourism factor, which is significant in the economy of the North, is also considered as the modulated kiosk has a visual aspect innovative and differentiated. The environmental issue is addressed by encouraging the reuse of PET material and EPS (polystyrene)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Materials denominated technical textiles can be defined as structures designed and developed with function to fulfill specific functional requirements of various industrial sectors as are the cases of the automotive and aerospace industries. In this aspect the technical textiles are distinguished from conventional textile materials, in which the aesthetic and of comfort needs are of primordial importance. Based on these considerations, the subject of this dissertation was established having as its main focus the study of development of textile structures from aramid and glass fibers and acting in order to develop the manufacture of composite materials that combine properties of two different structures, manufactured in an identical operation, where each structure contributes to improving the properties of the resulting composite material. Therefore were created in laboratory scale, textile structures with low weight and different composition: aramid (100%), glass (100%) and aramid /glass (65/35%), in order to use them as a reinforcing element in composite materials with polyester matrix. These composites were tested in tension and its fracture surface, evaluated by MEV. Based on the analysis of mechanical properties of the developed composites, the efficiency of the structures prepared as reinforcing element were testified by reason of that the resistance values of the composites are far superior to the polyester matrix. It was also observed that hybridization in tissue structure was efficient, since the best results obtained were for hybrid composites, where strength to the rupture was similar to the steel 1020, reaching values on the order of 340 MPa

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Materials known as technical textiles can be defined as structures designed and developed to meet specific functional requirements of various industry sectors, which is the case in automotive and aerospace industries, and other specific applications. Therefore, the purpose of this work presents the development and manufacture of polymer composite with isophthalic polyester resin. The reinforcement of the composite structure is a technical textile fabric made from high performance fibers, aramid (Kevlar 49) and glass fiber E. The fabrics are manufactured by the same method, with the aim of improving the tensile strength of the resulting polymer composite material. The fabrics, we developed some low grammage technical textile structures in laboratory scale and differentiated-composition type aramid (100%), hybrid 1 aramid fiber / glass (65/35%) and hybrid 2 aramid fiber / glass (85/15% ) for use as a reinforcing element in composite materials with unsaturated isophthalic polyester matrix. The polymer composites produced were tested in uniaxial tensile fracture surface and it´s evaluated by SEM. The purpose of this work characterize the performance of polymer composites prepared, identifying changes and based on resistance to strain corresponding to the mechanical behavior. The objectives are to verify the capability of using this reinforcement structure, along with the use of high performance fibers and resin in terms of workability and mechanical strength; verify the adherence of the fiber to the matrix and the fracture surface by electron microscopy scanning and determination of tensile strength by tensile test. The results indicate that, in a comparative study to the response of uniaxial tensile test for tensile strength of the composites and the efficiency of the low percentage of reinforcement element, being a technical textile fabric structure that features characteristic of lightness and low weight added in polymer composites

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, cellulose nanofibers were extracted from banana fibers via a steam explosion technique. The chemical composition, morphology and thermal properties of the nanofibers were characterized to investigate their suitability for use in bio-based composite material applications. Chemical characterization of the banana fibers confirmed that the cellulose content was increased from 64% to 95% due to the application of alkali and acid treatments. Assessment of fiber chemical composition before and after chemical treatment showed evidence for the removal of non-cellulosic constituents such as hemicelluloses and lignin that occurred during steam explosion, bleaching and acid treatments. Surface morphological studies using SEM and AFM revealed that there was a reduction in fiber diameter during steam explosion followed by acid treatments. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. TGA and DSC results showed that the developed nanofibers exhibit enhanced thermal properties over the untreated fibers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physicochemical properties and morphology of spongolite, a fibrous hollow material from Mato Grosso do Sul State (Brazil) have been studied. The results of thermal analysis, scanning electron microscopy (SEM), X-ray diffraction and NMR spectroscopy indicated that external and internal surfaces of silica spicules are covered by silica gel layers. The water evolved in the range 120-350degreesC is the result of silanol groups condensation to siloxane bonds. Total homogenization of the needles is achieved by heating spongolite over 900degreesC. This mineral may be considered as a natural composite material containing surface-immobilized reactive species. The presence of active silica gel layers opens the possibilities of attaching functional groups to spongolite surface. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of removing dentin collagen exposed by acid etching on the microleakage of bonded restorations with and without flowable composite application and submitted to thermocycling and long-term water storage. Materials and Methods: Standardized Class V cavities were prepared in 180 bovine incisors. They were randomly assigned to three groups according to the adhesive technique used. Conventional group (C): Single Bond was applied according to the manufacturer's instructions and Z250 composite was placed. Hypochlorite group (H): After acid etching a 10% NaOCl aqueous solution was applied for 1 min, then Single Bond and Z250 were applied. Hypochlorite and Flowable group (HF): Similar to group H, but following adhesive application, a thin layer of Natural Flow flowable composite was applied before the Z250. Each group was divided into three subgroups (0, 6, 12), which remained immersed in distilled water for 24 h or 6 or 12 months and underwent 500, 1500 or 2500 thermal cycles, respectively. At the end of each storage time, the specimes were stained with silver nitrate, decalcified, immersed in methyl salicylate for clearing and observed under a stereomicroscope to determine microleakage (scores 0 to 4). The data were analyzed using the Kruskal-Wallis and the Multiple Comparison Tests (α = 0.05). Results: After 12 months, every group showed significant increases in microleakage. There was no significant difference between Groups H and HF for the three different periods of time, but they showed statistically less microleakage than Group C. Conclusion: The removal of dentinal collagen reduced the marginal microleakage when compared to the conventional technique. The use of the flowable composite did not produce significant effects. No technique was completely effective in preventing microleakage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents an application of a Boundary Element Method (BEM) formulation for anisotropic body analysis using isotropic fundamental solution. The anisotropy is considered by expressing a residual elastic tensor as the difference of the anisotropic and isotropic elastic tensors. Internal variables and cell discretization of the domain are considered. Masonry is a composite material consisting of bricks (masonry units), mortar and the bond between them and it is necessary to take account of anisotropy in this type of structure. The paper presents the formulation, the elastic tensor of the anisotropic medium properties and the algebraic procedure. Two examples are shown to validate the formulation and good agreement was obtained when comparing analytical and numerical results. Two further examples in which masonry walls were simulated, are used to demonstrate that the presented formulation shows close agreement between BE numerical results and different Finite Element (FE) models. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)