910 resultados para complexity metrics
Resumo:
Due to the intense international competition, demanding, and sophisticated customers, and diverse transforming technological change, organizations need to renew their products and services by allocating resources on research and development (R&D). Managing R&D is complex, but vital for many organizations to survive in the dynamic, turbulent environment. Thus, the increased interest among decision-makers towards finding the right performance measures for R&D is understandable. The measures or evaluation methods of R&D performance can be utilized for multiple purposes; for strategic control, for justifying the existence of R&D, for providing information and improving activities, as well as for the purposes of motivating and benchmarking. The earlier research in the field of R&D performance analysis has generally focused on either the activities and considerable factors and dimensions - e.g. strategic perspectives, purposes of measurement, levels of analysis, types of R&D or phases of R&D process - prior to the selection of R&Dperformance measures, or on proposed principles or actual implementation of theselection or design processes of R&D performance measures or measurement systems. This study aims at integrating the consideration of essential factors anddimensions of R&D performance analysis to developed selection processes of R&D measures, which have been applied in real-world organizations. The earlier models for corporate performance measurement that can be found in the literature, are to some extent adaptable also to the development of measurement systemsand selecting the measures in R&D activities. However, it is necessary to emphasize the special aspects related to the measurement of R&D performance in a way that make the development of new approaches for especially R&D performance measure selection necessary: First, the special characteristics of R&D - such as the long time lag between the inputs and outcomes, as well as the overall complexity and difficult coordination of activities - influence the R&D performance analysis problems, such as the need for more systematic, objective, balanced and multi-dimensional approaches for R&D measure selection, as well as the incompatibility of R&D measurement systems to other corporate measurement systems and vice versa. Secondly, the above-mentioned characteristics and challenges bring forth the significance of the influencing factors and dimensions that need to be recognized in order to derive the selection criteria for measures and choose the right R&D metrics, which is the most crucial step in the measurement system development process. The main purpose of this study is to support the management and control of the research and development activities of organizations by increasing the understanding of R&D performance analysis, clarifying the main factors related to the selection of R&D measures and by providing novel types of approaches and methods for systematizing the whole strategy- and business-based selection and development process of R&D indicators.The final aim of the research is to support the management in their decision making of R&D with suitable, systematically chosen measures or evaluation methods of R&D performance. Thus, the emphasis in most sub-areas of the present research has been on the promotion of the selection and development process of R&D indicators with the help of the different tools and decision support systems, i.e. the research has normative features through providing guidelines by novel types of approaches. The gathering of data and conducting case studies in metal and electronic industry companies, in the information and communications technology (ICT) sector, and in non-profit organizations helped us to formulate a comprehensive picture of the main challenges of R&D performance analysis in different organizations, which is essential, as recognition of the most importantproblem areas is a very crucial element in the constructive research approach utilized in this study. Multiple practical benefits regarding the defined problemareas could be found in the various constructed approaches presented in this dissertation: 1) the selection of R&D measures became more systematic when compared to the empirical analysis, as it was common that there were no systematic approaches utilized in the studied organizations earlier; 2) the evaluation methods or measures of R&D chosen with the help of the developed approaches can be more directly utilized in the decision-making, because of the thorough consideration of the purpose of measurement, as well as other dimensions of measurement; 3) more balance to the set of R&D measures was desired and gained throughthe holistic approaches to the selection processes; and 4) more objectivity wasgained through organizing the selection processes, as the earlier systems were considered subjective in many organizations. Scientifically, this dissertation aims to make a contribution to the present body of knowledge of R&D performance analysis by facilitating dealing with the versatility and challenges of R&D performance analysis, as well as the factors and dimensions influencing the selection of R&D performance measures, and by integrating these aspects to the developed novel types of approaches, methods and tools in the selection processes of R&D measures, applied in real-world organizations. In the whole research, facilitation of dealing with the versatility and challenges in R&D performance analysis, as well as the factors and dimensions influencing the R&D performance measure selection are strongly integrated with the constructed approaches. Thus, the research meets the above-mentioned purposes and objectives of the dissertation from the scientific as well as from the practical point of view.
Resumo:
In this paper we describe a taxonomy of task demands which distinguishes between Task Complexity, Task Condition and Task Difficulty. We then describe three theoretical claims and predictions of the Cognition Hypothesis (Robinson 2001, 2003b, 2005a) concerning the effects of task complexity on: (a) language production; (b) interaction and uptake of information available in the input to tasks; and (c) individual differences-task interactions. Finally we summarize the findings of the empirical studies in this special issue which all address one or more of these predictions and point to some directions for continuing, future research into the effects of task complexity on learning and performance.
Resumo:
The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE).
Resumo:
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.
Resumo:
This paper analyses the effects of manipulating the cognitive complexity of L2 oral tasks on language production. It specifically focuses on self-repairs, which are taken as a measure of accuracy since they denote both attention to form and an attempt at being accurate. By means of a repeated measures de- sign, 42 lower-intermediate students were asked to perform three different tasks types (a narrative, and instruction-giving task, and a decision-making task) for which two degrees of cognitive complexity were established. The narrative task was manipulated along +/− Here-and-Now, an instruction-giving task ma- nipulated along +/− elements, and the decision-making task which is manipu- lated along +/− reasoning demands. Repeated measures ANOVAs are used for the calculation of differences between degrees of complexity and among task types. One-way ANOVA are used to detect potential differences between low- proficiency and high-proficiency participants. Results show an overall effect of Task Complexity on self-repairs behavior across task types, with different be- haviors existing among the three task types. No differences are found between the self-repair behavior between low and high proficiency groups. Results are discussed in the light of theories of cognition and L2 performance (Robin- son 2001a, 2001b, 2003, 2005, 2007), L1 and L2 language production models (Levelt 1989, 1993; Kormos 2000, 2006), and attention during L2 performance (Skehan 1998; Robinson, 2002).
Resumo:
Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches.
Resumo:
This article examines the mainstream categorical definition of coreference as "identity of reference." It argues that coreference is best handled when identity is treated as a continuum, ranging from full identity to non-identity, with room for near-identity relations to explain currently problematic cases. This middle ground is needed to account for those linguistic expressions in real text that stand in relations that are neither full coreference nor non-coreference, a situation that has led to contradictory treatment of cases in previous coreference annotation efforts. We discuss key issues for coreference such as conceptual categorization, individuation, criteria of identity, and the discourse model construct. We redefine coreference as a scalar relation between two (or more) linguistic expressions that refer to discourse entities considered to be at the same granularity level relevant to the linguistic and pragmatic context. We view coreference relations in terms of mental space theory and discuss a large number of real life examples that show near-identity at different degrees.
Resumo:
Tämä tutkimus pyrkii selvittämään, miten toimitusketjun suorituskykyä voidaan mitata kohdeyrityksessä. Supply Chain Council (SCC) on vuonna 1996 kehittänyt Supply Chain Operations Reference (SCOR) – mallin, joka mahdollistaa myös suorituskyvyn mittaamisen. Tämän tutkimuksen tarkoituksena on soveltaa SCOR-mallin suorituskyvyn mittausmallia kohdeyrityksessä. Työ on kvalitatiivinen tapaustutkimus. Työn teoriaosassa on pääasiallisesti käsitelty toimitusketjua ja suorituskyvyn mittaamista koskevaa kirjallisuutta. Mittausjärjestelmän luominen alkaa kohdeyrityksen esittelyllä. SCOR – mallin mittarit on kohdeyrityksessä rakennettu SCC:n ehdotusten mukaisesti, jotta mittareiden tulokset olisivat käyttökelpoisia myös benchmarkkausta varten. Malli sisältää 10 SCOR – mittaria, sekä muutamia muita Haltonin omia mittareita. Lopputuloksena voidaan nähdä, että SCOR – malli antaa hyvän yleiskuvan toimitusketjun suorituskyvystä, mutta kohdeyrityksessä on silti tarvetta kehittää edelleen informatiivisempia mittareita, jotka antaisivat yksityiskohtaisempaa tietoa kohdeyrityksen johdolle.
Resumo:
CONTEXT: Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by (a) the metabolites of the fetal-placental unit at birth, (b) the fetal adrenal androgens until its involution 3-6 months postnatally, and (c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE: The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS: We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS: 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION: The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.
Resumo:
With qualitative methods being increasingly used in health science fields, numerous grids proposing criteria to evaluate the quality of this type of research have been produced. Expert evaluators deem that there is a lack of consensual tools to evaluate qualitative research. Based on the review of 133 quality criteria grids for qualitative research in health sciences, the authors present the results of a computerized lexicometric analysis, which confirms the variety of intra- and inter-grid constructions, including within the same field. This variety is linked to the authors' paradigmatic references underlying the criteria proposed. These references seem to be built intuitively, reflecting internal representations of qualitative research, thus making the grids and their criteria hard to compare. Consequently, the consensus on the definitions and the number of criteria becomes problematic. The paradigmatic and theoretical references of the grids should be specified so that users could better assess their contributions and limitations.
Resumo:
This study extends the standard econometric treatment of appellate court outcomes by 1) considering the role of decision-maker effort and case complexity, and 2) adopting a multi-categorical selection process of appealed cases. We find evidence of appellate courts being affected by both the effort made by first-stage decision makers and case complexity. This illustrates the value of widening the narrowly defined focus on heterogeneity in individual-specific preferences that characterises many applied studies on legal decision-making. Further, the majority of appealed cases represent non-random sub-samples and the multi-categorical selection process appears to offer advantages over the more commonly used dichotomous selection models.