908 resultados para coda duration magnitudes
Resumo:
The channel-based model of duration perception postulates the existence of neural mechanisms that respond selectively to a narrow range of stimulus durations centred on their preferred duration (Heron et al Proceedings of the Royal Society B 279 690–698). In principle the channel-based model could
explain recent reports of adaptation-induced, visual duration compression effects (Johnston et al Current Biology 16 472–479; Curran and Benton Cognition 122 252–257); from this perspective duration compression is a consequence of the adapting stimuli being presented for a longer duration than the test stimuli. In the current experiment observers adapted to a sequence of moving random dot patterns at the same retinal position, each 340ms in duration and separated by a variable (500–1000ms) interval. Following adaptation observers judged the duration of a 600ms test stimulus at the same location. The test stimulus moved in the same, or opposite, direction as the adaptor. Contrary to the channel-based
model’s prediction, test stimulus duration appeared compressed, rather than expanded, when it moved in the same direction as the adaptor. That test stimulus duration was not distorted when moving in the opposite direction further suggests that visual timing mechanisms are influenced by additional neural processing associated with the stimulus being timed.
Resumo:
Background: Spatially localized duration compression of a briefly presented moving stimulus following adaptation in the same location is taken as evidence for modality-specific neural timing mechanisms.
Aims: The present study used random dot motion stimuli to investigate where these mechanisms may be located.
Method: Experiment 1 measured duration compression of the test stimulus as a function of adaptor speed and revealed that duration compression is speed tuned. These data were then used to make predictions of duration compression responses for various models which were tested in experiment 2. Here a mixed-speed adaptor stimulus was used with duration compression being measured as a function of the adaptor’s ‘speed notch’ (the removal of a central band from the speed range).
Results: The results were consistent with a local-mean model.
Conclusions: Local-motion mechanisms are involved in duration perception of brief events.
Resumo:
We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.
Resumo:
Accurately encoding the duration and temporal order of events is essential for survival and important to everyday activities, from holding conversations to driving in fast flowing traffic. Although there is a growing body of evidence that the timing of brief events (< 1s) is encoded by modality-specific mechanisms, it is not clear how such mechanisms register event duration. One approach gaining traction is a channel-based model; this envisages narrowly-tuned, overlapping timing mechanisms that respond preferentially to different durations. The channel-based model predicts that adapting to a given event duration will result in overestimating and underestimating the duration of longer and shorter events, respectively. We tested the model by having observers judge the duration of a brief (600ms) visual test stimulus following adaptation to longer (860ms) and shorter (340ms) stimulus durations. The channel-based model predicts perceived duration compression of the test stimulus in the former condition and perceived duration expansion in the latter condition. Duration compression occurred in both conditions, suggesting that the channel-based model does not adequately account for perceived duration of visual events.
Resumo:
The duration compression effect is a phenomenon in which prior adaptation to a spatially circumscribed dynamic stimulus results in the duration of subsequent subsecond stimuli presented in the adapted region being underestimated. There is disagreement over the frame of reference within which the duration compression phenomenon occurs. One view holds that the effect is driven by retinotopic-tuned mechanisms located at early stages of visual processing, and an alternate position is that the mechanisms are spatiotopic and occur at later stages of visual processing (MT+). We addressed the retinotopic-spatiotopic question by using adapting stimuli – drifting plaids - that are known to activate global-motion mechanisms in area MT. If spatiotopic mechanisms contribute to the duration compression effect, drifting plaid adaptors should be well suited to revealing them. Following adaptation participants were tasked with estimating the duration of a 600ms random dot stimulus, whose direction was identical to the pattern direction of the adapting plaid, presented at either the same retinotopic or the same spatiotopic location as the adaptor. Our results reveal significant duration compression in both conditions, pointing to the involvement of both retinotopic-tuned and spatiotopic-tuned mechanisms in the duration compression effect.
Resumo:
Tese de mestrado em Bioestatística, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2013
Resumo:
BACKGROUND: Patient-controlled epidural analgesia with low concentrations of anesthetics is effective in reducing labor pain. The aim of this study was to assess and compare two ultra-low dose regimens of ropivacaine and sufentanil (0.1% ropivacaine plus 0.5 μg.ml-1 sufentanil vs. 0.06% ropivacaine plus 0.5 μg.ml-1 sufentanil) on the intervals between boluses and the duration of labor. MATERIAL AND METHODS: In this non-randomized prospective study, conducted between January and July 2010, two groups of parturients received patient-controlled epidural analgesia: Group I (n = 58; 1 mg.ml-1 ropivacaine + 0.5 μg.ml-1 sufentanil) and Group II (n = 57; 0.6 mg.ml-1 ropivacaine + 0.5 μg.ml-1 sufentanil). Rescue doses of ropivacaine at the concentration of the assigned group without sufentanil were administered as necessary. Pain, local anesthetic requirements, neuraxial blockade characteristics, labor and neonatal outcomes, and maternal satisfaction were recorded. RESULTS: The ropivacaine dose was greater in Group I (9.5 [7.7-12.7] mg.h-1 vs. 6.1 [5.1-9.8 mg.h-1], p < 0.001). A time increase between each bolus was observed in Group I (beta = 32.61 min, 95% CI [25.39; 39.82], p < 0.001), whereas a time decrease was observed in Group II (beta = -1.40 min, 95% CI [-2.44; -0.36], p = 0.009). The duration of the second stage of labor in Group I was significantly longer than that in Group II (78 min vs. 65 min, p < 0.001). CONCLUSIONS: Parturients receiving 0.06% ropivacaine exhibited less evidence of cumulative effects and exhibited faster second stage progression than those who received 0.1% ropivacaine.
Resumo:
OBJECTIVE: This study was designed to analyze the duration of chest tube drainage on pain intensity and distribution after cardiac surgery. METHODS: Two groups of 80 cardiac surgery adult patients, operated on in two different hospitals, by the same group of cardiac surgeons, and with similar postoperative strategies, were compared. However, in one hospital (long drainage group), a conservative policy was adopted with the removal the chest tubes by postoperative day (POD) 2 or 3, while in the second hospital (short drainage group), all the drains were usually removed on POD 1. RESULTS: There was a trend toward less pain in the short drainage group, with a statistically significant difference on POD 2 (P=0.047). There were less patients without pain on POD 3 in the long drainage group (P=0. 01). The areas corresponding to the tract of the pleural tube, namely the epigastric area, the left basis of the thorax, and the left shoulder were more often involved in the long drainage group. There were three pneumonias in each group and no patient required repeated drainage. CONCLUSIONS: A policy of early chest drain ablation limits pain sensation and simplifies nursing care, without increasing the need for repeated pleural puncture. Therefore, a policy of short drainage after cardiac surgery should be recommended.
Resumo:
To date, for most biological and physiological phenomena, the scientific community has reach a consensus on their related function, except for sleep, which has an undetermined, albeit mystery, function. To further our understanding of sleep function(s), we first focused on the level of complexity at which sleep-like phenomenon can be observed. This lead to the development of an in vitro model. The second approach was to understand the molecular and cellular pathways regulating sleep and wakefulness, using both our in vitro and in vivo models. The third approach (ongoing) is to look across evolution when sleep or wakefulness appears. (1) To address the question as to whether sleep is a cellular property and how this is linked to the entire brain functioning, we developed a model of sleep in vitro by using dissociated primary cortical cultures. We aimed at simulating the major characteristics of sleep and wakefulness in vitro. We have shown that mature cortical cultures display a spontaneous electrical activity similar to sleep. When these cultures are stimulated by waking neurotransmitters, they show a tonic firing activity, similar to wakefulness, but return spontaneously to the "sleep-like" state 24h after stimulation. We have also shown that transcriptional, electrophysiological, and metabolic correlates of sleep and wakefulness can be reliably detected in dissociated cortical cultures. (2) To further understand at which molecular and cellular levels changes between sleep and wakefulness occur, we have used a pharmacological and systematic gene transcription approach in vitro and discovered a major role played by the Erk pathway. Indeed, pharmacological inhibition of this pathway in living animals decreased sleep by 2 hours per day and consolidated both sleep and wakefulness by reducing their fragmentation. (3) Finally, we tried to evaluate the presence of sleep in one of the most primitive species with a neural network. We set up Hydra as a model organism. We hypothesized that sleep as a cellular (neuronal) property may occur with the appearance of the most primitive nervous system. We were able to show that Hydra have periodic rest phases amounting to up to 5 hours per day. In conclusion, our work established an in vitro model to study sleep, discovered one of the major signaling pathways regulating vigilance states, and strongly suggests that sleep is a cellular property highly conserved at the molecular level during evolution. -- Jusqu'à ce jour, la communauté scientifique s'est mise d'accord sur la fonction d'une majorité des processus physiologiques, excepté pour le sommeil. En effet, la fonction du sommeil reste un mystère, et aucun consensus n'est atteint le concernant. Pour mieux comprendre la ou les fonctions du sommeil, (1) nous nous sommes d'abord concentré sur le niveau de complexité auquel un état ressemblant au sommeil peut être observé. Nous avons ainsi développé un modèle du sommeil in vitro, (2) nous avons disséqué les mécanismes moléculaires et cellulaires qui pourraient réguler le sommeil, (3) nous avons cherché à savoir si un état de sommeil peut être trouvé dans l'hydre, l'animal le plus primitif avec un système nerveux. (1) Pour répondre à la question de savoir à quel niveau de complexité apparaît un état de sommeil ou d'éveil, nous avons développé un modèle du sommeil, en utilisant des cellules dissociées de cortex. Nous avons essayé de reproduire les corrélats du sommeil et de l'éveil in vitro. Pour ce faire, nous avons développé des cultures qui montrent les signes électrophysiologiques du sommeil, puis quand stimulées chimiquement passent à un état proche de l'éveil et retournent dans un état de sommeil 24 heures après la stimulation. Notre modèle n'est pas parfait, mais nous avons montré que nous pouvions obtenir les corrélats électrophysiologiques, transcriptionnels et métaboliques du sommeil dans des cellules corticales dissociées. (2) Pour mieux comprendre ce qui se passe au niveau moléculaire et cellulaire durant les différents états de vigilance, nous avons utilisé ce modèle in vitro pour disséquer les différentes voies de signalisation moléculaire. Nous avons donc bloqué pharmacologiquement les voies majeures. Nous avons mis en évidence la voie Erkl/2 qui joue un rôle majeur dans la régulation du sommeil et dans la transcription des gènes qui corrèlent avec le cycle veille-sommeil. En effet, l'inhibition pharmacologique de cette voie chez la souris diminue de 2 heures la quantité du sommeil journalier et consolide l'éveil et le sommeil en diminuant leur fragmentation. (3) Finalement, nous avons cherché la présence du sommeil chez l'Hydre. Pour cela, nous avons étudié le comportement de l'Hydre pendant 24-48h et montrons que des périodes d'inactivité, semblable au sommeil, sont présentes dans cette espèce primitive. L'ensemble de ces travaux indique que le sommeil est une propriété cellulaire, présent chez tout animal avec un système nerveux et régulé par une voie de signalisation phylogénétiquement conservée.
Resumo:
The present thesis examines the determinants of the bankruptcy protection duration for Canadian firms. Using a sample of Canadian firms that filed for bankruptcy protection between the calendar years 1992 and 2009, we fmd that the firm age, the industry adjusted operating margin, the default spread, the industrial production growth rate or the interest rate are influential factors on determining the length of the protection period. Older firms tend to stay longer under protection from creditors. As older firms have more complicated structures and issues to settle, the risk of exiting soon the protection (the hazard rate) is small. We also find that firms that perform better than their benchmark as measured by the industry they belong to, tend to leave quickly the bankruptcy protection state. We conclude that the fate of relatively successful companies is determined faster. Moreover, we report that it takes less time to achieve a final solution to firms under bankrupt~y when the default spread is low or when the appetite for risk is high. Conversely, during periods of high default spreads and flight for quality, it takes longer time to resolve the bankruptcy issue. This last finding may suggest that troubled firms should place themselves under protection when spreads are low. However, this ignores the endogeneity issue: high default spread may cause and incidentally reflect higher bankruptcy rates in the economy. Indeed, we find that bankruptcy protection is longer during economic downturns. We explain this relation by the natural increase in default rate among firms (and individuals) during economically troubled times. Default spreads are usually larger during these harsh periods as investors become more risk averse since their wealth shrinks. Using a Log-logistic hazard model, we also fmd that firms that file under the Companies' Creditors Arrangement Act (CCAA) protection spend longer time restructuring than firms that filed under the Bankruptcy and Insolvency Act (BIA). As BIA is more statutory and less flexible, solutions can be reached faster by court orders.