850 resultados para coadjoint representation
Resumo:
Understanding how well National Marine Sanctuaries and other marine protected areas represent the diversity of species present within and among the biogeographic regions where they occur is essential for assessing their conservation value and identifying gaps in the protection of biological diversity. One of the first steps in any such assessment should be the development of clearly defined and scientifically justified planning boundaries representing distinct oceanographic conditions and faunal assemblages. Here, we propose a set of boundaries for the continental shelf of northeastern North America defined by subdivisions of the Eastern Temperate Province, based on a review and synthesis (i.e. meta-analysis) of the scientific literature. According to this review, the Eastern Temperate Province is generally divided into the Acadian and Virginian Subprovinces. Broad agreement places the Scotian Shelf, Gulf of Maine, and Bay of Fundy within the Acadian Subprovince. The proper association of Georges Bank is less clear; some investigators consider it part of the Acadian and others part of the Virginian. Disparate perspectives emerge from the analysis of different groups of organisms. Further, while some studies suggest a distinction between the Southern New England shelf and the rest of the Mid-Atlantic Bight, others describe the region as a broad transition zone with no unique characteristics of its own. We suggest there exists sufficient evidence to consider the Scotian Shelf, Gulf of Maine, Georges Bank, Southern New England, and Southern Mid-Atlantic Bight as distinct biogeographic regions from a conservation planning perspective, and present a set of proposed mapped boundaries. (PDF contains 23 pages.)
Resumo:
The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)
Designing a representation to support function; means based synthesis of mechanical design solutions
Resumo:
Neurons in the songbird forebrain nucleus HVc are highly sensitive to auditory temporal context and have some of the most complex auditory tuning properties yet discovered. HVc is crucial for learning, perceiving, and producing song, thus it is important to understand the neural circuitry and mechanisms that give rise to these remarkable auditory response properties. This thesis investigates these issues experimentally and computationally.
Extracellular studies reported here compare the auditory context sensitivity of neurons in HV c with neurons in the afferent areas of field L. These demonstrate that there is a substantial increase in the auditory temporal context sensitivity from the areas of field L to HVc. Whole-cell recordings of HVc neurons from acute brain slices are described which show that excitatory synaptic transmission between HVc neurons involve the release of glutamate and the activation of both AMPA/kainate and NMDA-type glutamate receptors. Additionally, widespread inhibitory interactions exist between HVc neurons that are mediated by postsynaptic GABA_A receptors. Intracellular recordings of HVc auditory neurons in vivo provides evidence that HV c neurons encode information about temporal structure using a variety of cellular and synaptic mechanisms including syllable-specific inhibition, excitatory post-synaptic potentials with a range of different time courses, and burst-firing, and song-specific hyperpolarization.
The final part of this thesis presents two computational approaches for representing and learning temporal structure. The first method utilizes comput ational elements that are analogous to temporal combination sensitive neurons in HVc. A network of these elements can learn using local information and lateral inhibition. The second method presents a more general framework which allows a network to discover mixtures of temporal features in a continuous stream of input.
Resumo:
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.
In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:
- For a given number of measurements, can we reliably estimate the true signal?
- If so, how good is the reconstruction as a function of the model parameters?
More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.
Resumo:
We use coherent-mode representation of partially coherent fields to analyze correlated imaging with classical light sources. This formalism is very useful to study the imaging quality. By decomposing the unknown object as the superposition of different coherent modes, the components corresponding to small eigenvalues cannot be well imaged. The generated images depend crucially on the distribution of the eigenvalues of the coherent-mode representation of the source and the decomposition coefficients of the objects. Three kinds of correlated imaging schemes are analyzed numerically.
Resumo:
We demonstrate that a pattern spectrum can be decomposed into the union of hit-or-miss transforms with respect to a series of structure-element pairs. Moreover we use a Boolean-logic function to express the pattern spectrum and show that the Boolean-logic representation of a pattern spectrum is composed of hit-or-miss min terms. The optical implementation of a pattern spectrum is based on an incoherent optical correlator with a feedback operation. (C) 1996 Optical Society of America
Resumo:
The electron diffraction investigation of the following compounds has been carried out: sulfur, sulfur nitride, realgar, arsenic trisulfide, spiropentane, dimethyltrisulfide, cis and trans lewisite, methylal, and ethylene glycol.
The crystal structures of the following salts have been determined by x-ray diffraction: silver molybdateand hydrazinium dichloride.
Suggested revisions of the covalent radii for B, Si, P, Ge, As, Sn, Sb, and Pb have been made, and values for the covalent radii of Al, Ga, In, Ti, and Bi have been proposed.
The Schomaker-Stevenson revision of the additivity rule for single covalent bond distances has been used in conjunction with the revised radii. Agreement with experiment is in general better with the revised radii than with the former radii and additivity.
The principle of ionic bond character in addition to that present in a normal covalent bond has been applied to the observed structures of numerous molecules. It leads to a method of interpretation which is at least as consistent as the theory of multiple bond formation.
The revision of the additivity rule has been extended to double bonds. An encouraging beginning along these lines has been made, but additional experimental data are needed for clarification.