989 resultados para climate variability
Resumo:
Climate change is considered to be the most pervasive and truly global of all issues affecting humanity. It poses a serious threat to the environment, as well as to economies and societies. Whilst it is clear that the impacts of climate change are varied, scientists have agreed that its effects will not be evenly distributed and that developing countries and small island developing States (SIDS) will be the first and hardest hit. Small island developing States, many of whom have fewer resources to adapt socially, technologically and financially to climate change, are considered to be the most vulnerable to the potential impacts of climate change. An economic analysis of climate change can provide essential input for identifying and preparing policies and strategies to help move the Caribbean closer to solving the problems associated with climate change, and to attaining individual and regional sustainable development goals. Climate change is expected to affect the health of populations. In fact, the World Health Organization (WHO), in Protecting Health from Climate Change (2008), states that the continuation of current patterns of fossil fuel use, development and population growth will lead to ongoing climate change, with serious effects on the environment and, consequently, on human lives and health. Assessing the economics of potential health impacts of climate variability and change requires an understanding of both the vulnerability of a population and its capacity to respond to new conditions. The Intergovernmental Panel on Climate Change (IPCC) defines vulnerability as the degree to which individuals and systems are susceptible to, or unable to cope with, the adverse effects of climate change, including climate variability and extremes (WHO and others, 2003). The United Nations Economic Commission for Latin America and the Caribbean (ECLAC), in collaboration with the Caribbean Community Centre for Climate Change (CCCCC), is pursuing a regional project to ―Review the Economics of Climate Change in the Caribbean‖ (RECCC). The purpose of the project is to assess the likely economic impacts of climate change on key sectors of Caribbean economies, through applying robust simulation modelling analyses under various socio-economic scenarios and carbon emission trajectories for the next 40 years. The findings are expected to stimulate local and national governments, regional institutions, the private sector and civil society to craft and implement policies, cost-effective options and efficient choices to mitigate and adapt to climate change.
Resumo:
Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty alleviation, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of St. Kitts and Nevis (SKN). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations for possible adaptation strategies and costs and benefits of adaptation.
Resumo:
Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty reduction, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of the British Virgin Islands (BVI). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations of possible adaptation strategies and costs and benefits of adaptation. A multi-pronged approach is employed in valuing the marine and coastal sector. Direct use and indirect use values are estimated. The amount of economic activity an ecosystem service generates in the local economy underpins estimation of direct use values. Tourism and fisheries are valued using the framework developed by the World Resources Institute. Biodiversity is valued in terms of the ecological functions it provides, such as climate regulation, shoreline protection, water supply erosion control and sediment retention, and biological control, among others. Estimates of future losses to the coastal zone from climate change are determined by considering: (1) the effect of sea level rise on coastal lands; and (2) the effect of a rise in sea surface temperature (SST) on coastal waters. Discount rates of 1%, 2% and 4% are employed to analyse all loss estimates in present value terms. The overall value for the coastal and marine sector is USD $1,606 million (mn). This is almost 2% larger than BVI’s 2008 GDP. Tourism and recreation comprise almost two-thirds of the value of the sector. By 2100, the effects of climate change on coastal lands are projected to be $3,988.6 mn, and $2,832.9 mn under the A2 and B2 scenarios respectively. In present value terms, if A2 occurs, losses range from $108.1-$1,596.8 mn and if B2 occurs, losses range from $74.1-$1,094.1 mn, depending on the discount rate used. Estimated costs of a rise in SST in 2050 indicate that they vary between $1,178.0 and $1,884.8 mn. Assuming a discount rate of 4%, losses range from $226.6 mn for the B2 scenario to $363.0 mn for the A2 scenario. If a discount rate of 1% is assumed, estimated losses are much greater, ranging from $775.6-$1,241.0 mn. Factoring in projected climate change impacts, the net value of the coastal and marine sector suggests that the costs of climate change significantly reduce the value of the sector, particularly under the A2 and B2 climate change scenarios for discount rates of 1% and 2%. In contrast, the sector has a large, positive, though declining trajectory, for all years when a 4% discount rate is employed. Since the BVI emits minimal greenhouse gases, but will be greatly affected by climate change, the report focuses on adaptation as opposed to mitigation strategies. The options shortlisted are: (1) enhancing monitoring of all coastal waters to provide early warning alerts of bleaching and other marine events; (2) introducing artificial reefs or fish-aggregating devices; (3) introducing alternative tourist attractions; (4) providing retraining for displaced tourism workers; and (5) revising policies related to financing national tourism offices to accommodate the new climatic realities. All adaptation options considered are quite justifiable in national terms; each had benefit-cost ratios greater than 1.
Resumo:
Since 2008 we have supported the collaborative initiative "Economics of Climate Change in Central America" aimed at demonstrating the impacts of climate variability and change and fostering a discussion on public policies in key sectors. The initiative has been led by the Ministries of Environment and Treasury or Finance of Central America, with the support of their ministerial councils, CCAD, COSEFIN, and Economic Integration Secretariat, SIECA. The Ministries of Agriculture and of Health, with their councils, CAC and COMISCA, have also joined the effort; and the Dominican Republic came on board in 2015.
Resumo:
Time series analysis of a diatom-inferred drought record suggests that Holocene hydroclimate of the northern Rocky Mountains has been characterized by oscillation between two mean climate states. The dominant climate state was initiated at the onset of the Holocene (ca. 11 ka); under this climate state, drought was strongly cyclic, recurring at frequencies that are similar to twentieth century multidecadal phase changes of the Pacific Decadal Oscillation. This pattern remained consistent throughout much of the mid- Holocene, continuing until ca. 4.5 ka. After this time the mean climate state changed, and drought recurrence became unstable; periods of cyclic drought alternated with periods of less predictable drought. The timing of this shift in climate was coincident with widespread severe drought in the mid-continent of North America. Overall, the strongest periodicity in severe drought occurred during the mid-Holocene, when temperatures in the northern Rocky Mountains were warmer than today.
Resumo:
The changes in diatom species composition in a sediment core from Crevice Lake, Yellowstone National Park, spanning the past 2550 yr, were used to reconstruct long-term limnological and ecological conditions that may be related to late Holocene climate variability. Planktic forms dominate the fossil diatom assemblages throughout this record, but changes in species dominance indicate varying nutrient levels over time, particularly phosphorus. The changes in the nutrient concentrations in the lake were probably driven by changes in temperature and wind strength that affected the duration of watercolumn mixing and thus the extent of nutrient recycling from deep waters. Prior to 2100 cal before present (BP), Stephanodiscus minutulus and Synedra tenera dominated, suggesting long cool springs with extensive regeneration of phosphorus from the hypolimnion that resulted from isothermal mixing. From 2100 to 800 cal BP, these species were replaced by Cyclotella michiganiana and Cyclotella bodanica. These species are characteristic of lower nutrient concentrations and are interpreted here to reflect warm summers with long periods of thermal stratification. From 800 to 50 cal BP, S. minutulus dominated the diatom assemblage, suggesting a return to lengthy mixing during spring. The most dramatic late Holocene changes in the fossil diatom assemblages occurred during the transition from the Medieval Period to the Little Ice Age, approximately 800 cal BP.
Resumo:
This work assessed homogeneity of the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG) weather station climate series, using various statistical techniques. The record from this target station is one of the longest in Brazil, having commenced in 1933 with observations of precipitation, and temperatures and other variables later in 1936. Thus, it is one of the few stations in Brazil with enough data for long-term climate variability and climate change studies. There is, however, a possibility that its data may have been contaminated by some artifacts over time. Admittedly, there was an intervention on the observations in 1958, with the replacement of instruments, for which the size of impact has not been yet evaluated. The station transformed in the course of time from rural to urban, and this may also have influenced homogeneity of the observations and makes the station less representative for climate studies over larger spatial scales. Homogeneity of the target station was assessed applying both absolute, or single station tests, and tests relatively to regional climate, in annual scale, regarding daily precipitation, relative humidity, maximum (TMax), minimum (TMin), and wet bulb temperatures. Among these quantities, only precipitation does not exhibit any inhomogeneity. A clear signal of change of instruments in 1958 was detected in the TMax and relative humidity data, the latter certainly because of its strong dependence on temperature. This signal is not very clear in TMin, but it presents non-climatic discontinuities around 1953 and around 1970. A significant homogeneity break is found around 1990 for TMax and wet bulb temperature. The discontinuities detected after 1958 may have been caused by urbanization, as the observed warming trend in the station is considerably greater than that corresponding to regional climate.
Resumo:
In order to investigate the climate variability in the northern Antarctic Peninsula region, this paper focuses on the relationship between stable isotope content of precipitation and firn, and main meteorological variables (air temperature, relative humidity, sea surface temperature, and sea ice extent). Between 2008 and 2010, we collected precipitation samples and retrieved firn cores from several key sites in this region. We conclude that the deuterium excess oscillation represents a robust indicator of the meteorological variability on a seasonal to sub-seasonal scale. Low absolute deuterium excess values and the synchronous variation of both deuterium excess and air temperature imply that the evaporation of moisture occurs in the adjacent Southern Ocean. The delta O-18-air temperature relationship is complicated and significant only at a (multi)seasonal scale. Backward trajectory calculations show that air-parcels arriving at the region during precipitation events predominantly originate at the South Pacific Ocean and Bellingshausen Sea. These investigations will be used as a calibration for ongoing and future research in the area, suggesting that appropriate locations for future ice core research are located above 600 m a.s.l. We selected the Plateau Laclavere, Antarctic Peninsula as the most promising site for a deeper drilling campaign.
Resumo:
This study analyzes important aspects of the tropical Atlantic Ocean from simulations of the fourth version of the Community Climate System Model (CCSM4): the mean sea surface temperature (SST) and wind stress, the Atlantic warm pools, the principal modes of SST variability, and the heat budget in the Benguela region. The main goal was to assess the similarities and differences between the CCSM4 simulations and observations. The results indicate that the tropical Atlantic overall is realistic in CCSM4. However, there are still significant biases in the CCSM4 Atlantic SSTs, with a colder tropical North Atlantic and a hotter tropical South Atlantic, that are related to biases in the wind stress. These are also reflected in the Atlantic warm pools in April and September, with its volume greater than in observations in April and smaller than in observations in September. The variability of SSTs in the tropical Atlantic is well represented in CCSM4. However, in the equatorial and tropical South Atlantic regions, CCSM4 has two distinct modes of variability, in contrast to observed behavior. A model heat budget analysis of the Benguela region indicates that the variability of the upper-ocean temperature is dominated by vertical advection, followed by meridional advection.
Resumo:
This PhD thesis addresses the topic of large-scale interactions between climate and marine biogeochemistry. To this end, centennial simulations are performed under present and projected future climate conditions with a coupled ocean-atmosphere model containing a complex marine biogeochemistry model. The role of marine biogeochemistry in the climate system is first investigated. Phytoplankton solar radiation absorption in the upper ocean enhances sea surface temperatures and upper ocean stratification. The associated increase in ocean latent heat losses raises atmospheric temperatures and water vapor. Atmospheric circulation is modified at tropical and extratropical latitudes with impacts on precipitation, incoming solar radiation, and ocean circulation which cause upper-ocean heat content to decrease at tropical latitudes and to increase at middle latitudes. Marine biogeochemistry is tightly related to physical climate variability, which may vary in response to internal natural dynamics or to external forcing such as anthropogenic carbon emissions. Wind changes associated with the North Atlantic Oscillation (NAO), the dominant mode of climate variability in the North Atlantic, affect ocean properties by means of momentum, heat, and freshwater fluxes. Changes in upper ocean temperature and mixing impact the spatial structure and seasonality of North Atlantic phytoplankton through light and nutrient limitations. These changes affect the capability of the North Atlantic Ocean of absorbing atmospheric CO2 and of fixing it inside sinking particulate organic matter. Low-frequency NAO phases determine a delayed response of ocean circulation, temperature and salinity, which in turn affects stratification and marine biogeochemistry. In 20th and 21st century simulations natural wind fluctuations in the North Pacific, related to the two dominant modes of atmospheric variability, affect the spatial structure and the magnitude of the phytoplankton spring bloom through changes in upper-ocean temperature and mixing. The impacts of human-induced emissions in the 21st century are generally larger than natural climate fluctuations, with the phytoplankton spring bloom starting one month earlier than in the 20th century and with ~50% lower magnitude. This PhD thesis advances the knowledge of bio-physical interactions within the global climate, highlighting the intrinsic coupling between physical climate and biosphere, and providing a framework on which future studies of Earth System change can be built on.
Resumo:
The present study describes a Late Miocene (early Tortonian - early Messinian) transitional carbonate system that combines elements of tropical and cool-water carbonate systems (Irakleion Basin, island of Crete, Greece). As documented by stratal geometries, the submarine topography of the basin was controlled by tilting blocks. Coral reefs formed by Porites and Tarbellastrea occurred in a narrow clastic coastal belt along a „central Cretan landmass“, and steep escarpments formed by faulting. Extensive covers of level-bottom communities existed in a low-energy environment on the gentle dip-slope ramps of the blocks that show the widest geographical distribution within the basin. Consistent patterns of landward and basinward shift of coastal onlap in all outcrop studies reveal an overriding control of 3rd and 4th order sea level changes on sediment dynamics and facies distributions over block movements. An increasingly dry climate and the complex submarine topography of the fault block mosaic kept sediment and nutrient discharge at a minimum. The skeletal limestone facies therefore reflects oligotrophic conditions and a sea surface temperature (SST) near the lower threshold temperature of coral reefs in a climatic position transitional between the tropical coral reef belt and the temperate zone. Stable isotope records (δ18O, δ13C) from massiv, exceptionally preserved Late Miocene aragonite coral skeletons reflect seasonal changes in sea surface temperature and symbiont autotrophy. Spectral analysis of a 69 years coral δ18O record reveals significant variance at interannual time scales (5-6 years) that matches the present-day eastern Mediterranean climate variability controlled by the Arctic Oscillation/North Atlantic Oscillation (AO/NAO), the Northern Hemisphere’s dominant mode of atmospheric variability. Supported by simulations with a complex atmospheric general circulation model coupled to a mixed-layer ocean model, it is suggested, that climate dynamics in the eastern Mediterranean and central Europe reflect atmospheric variability related to the Icelandic Low 10 million years ago. Usually, Miocene corals are transformed in calcite spar in geological time and isotope values are reset by diagenetic alteration. It is demonstrated that the relicts of growth bands represent an intriguing source of information for the growth conditions of fossil corals. Recrystallized growth bands were measured systematically in massive Porites from Crete. The Late Miocene corals were growing slowly with 2-4 mm/yr, compatible with present-day Porites from high latitude reefs, a relationship that fits the position of Crete at the margin of the Miocene tropical reef belt. Over Late Miocene time (Tortonian - early Messinian) growth rates remained remarkably constant, and if the modern growth temperature relationship for massive Porites applies to the Neogene, minimum (winter) SST did not exceed 19-21°C.
Resumo:
Proxy data are essential for the investigation of climate variability on time scales larger than the historical meteorological observation period. The potential value of a proxy depends on our ability to understand and quantify the physical processes that relate the corresponding climate parameter and the signal in the proxy archive. These processes can be explored under present-day conditions. In this thesis, both statistical and physical models are applied for their analysis, focusing on two specific types of proxies, lake sediment data and stable water isotopes.rnIn the first part of this work, the basis is established for statistically calibrating new proxies from lake sediments in western Germany. A comprehensive meteorological and hydrological data set is compiled and statistically analyzed. In this way, meteorological times series are identified that can be applied for the calibration of various climate proxies. A particular focus is laid on the investigation of extreme weather events, which have rarely been the objective of paleoclimate reconstructions so far. Subsequently, a concrete example of a proxy calibration is presented. Maxima in the quartz grain concentration from a lake sediment core are compared to recent windstorms. The latter are identified from the meteorological data with the help of a newly developed windstorm index, combining local measurements and reanalysis data. The statistical significance of the correlation between extreme windstorms and signals in the sediment is verified with the help of a Monte Carlo method. This correlation is fundamental for employing lake sediment data as a new proxy to reconstruct windstorm records of the geological past.rnThe second part of this thesis deals with the analysis and simulation of stable water isotopes in atmospheric vapor on daily time scales. In this way, a better understanding of the physical processes determining these isotope ratios can be obtained, which is an important prerequisite for the interpretation of isotope data from ice cores and the reconstruction of past temperature. In particular, the focus here is on the deuterium excess and its relation to the environmental conditions during evaporation of water from the ocean. As a basis for the diagnostic analysis and for evaluating the simulations, isotope measurements from Rehovot (Israel) are used, provided by the Weizmann Institute of Science. First, a Lagrangian moisture source diagnostic is employed in order to establish quantitative linkages between the measurements and the evaporation conditions of the vapor (and thus to calibrate the isotope signal). A strong negative correlation between relative humidity in the source regions and measured deuterium excess is found. On the contrary, sea surface temperature in the evaporation regions does not correlate well with deuterium excess. Although requiring confirmation by isotope data from different regions and longer time scales, this weak correlation might be of major importance for the reconstruction of moisture source temperatures from ice core data. Second, the Lagrangian source diagnostic is combined with a Craig-Gordon fractionation parameterization for the identified evaporation events in order to simulate the isotope ratios at Rehovot. In this way, the Craig-Gordon model can be directly evaluated with atmospheric isotope data, and better constraints for uncertain model parameters can be obtained. A comparison of the simulated deuterium excess with the measurements reveals that a much better agreement can be achieved using a wind speed independent formulation of the non-equilibrium fractionation factor instead of the classical parameterization introduced by Merlivat and Jouzel, which is widely applied in isotope GCMs. Finally, the first steps of the implementation of water isotope physics in the limited-area COSMO model are described, and an approach is outlined that allows to compare simulated isotope ratios to measurements in an event-based manner by using a water tagging technique. The good agreement between model results from several case studies and measurements at Rehovot demonstrates the applicability of the approach. Because the model can be run with high, potentially cloud-resolving spatial resolution, and because it contains sophisticated parameterizations of many atmospheric processes, a complete implementation of isotope physics will allow detailed, process-oriented studies of the complex variability of stable isotopes in atmospheric waters in future research.rn
Resumo:
There are clear signs that the agro-pastoralists in the Himalayan and Hindu-Kush mountain ranges will have less cropping opportunities due to reduced possibilities for irrigated agriculture as a result of climate change. The importance of extensive livestock production based on well adapted livestock species may once again increase. This calls for a better documentation and understanding of the adaptation capabilities of indigenous breeds considering a changing environment. The current study investigates the adaptive traits of the Azikheli buffalo to mountain environments through calculating mean, standard error and percentages for different variables. Results from this study suggest that the brown coat color, the small body size and the high fertility are adaptive traits of the Azikheli buffalo that may well suit harsh mountainous environment conditions with greater climate variability. Local farmers find it hard to sustain the Azikheli buffalo’s key adaptive traits because of a low bull to buffalo ratio, possibility of insemination with semen from imported breeds and a lack of institutional support to conserve the Azikheli breed. The breed is crucial for sustaining custodian communities in these mountains and thus needs to be conserved.
Resumo:
Direct observations, satellite measurements and paleo records reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its centre. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying, but small amplitude and multi-decadal to centennial periodicities and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multi-decadal scales.
Resumo:
The Mediterranean Region has many morphologic, geographical, historical, and societal characteristics, which make its climate scientifically interesting. The concept of Mediterranean climate is characterized by mild wet winters and warm to hot, dry summers and occur on the west side of continents between about 30° and 40° latitude. However, the presence of a relatively large mass of water is unique to the actual Mediterranean region. The Mediterranean Sea is a marginal and semi-enclosed sea; it is located on the western side of a large continental area and is surrounded by Europe to the North, Africa to the South, and Asia to the East. The chapter discusses that the climate of the Mediterranean region is to a large extent forced by planetary scale patterns. The time and space behavior of the regional features associated with such large-scale forcing is complex. Orography and land–sea distribution play an important role establishing the climate at basin scale and its teleconnections with global patterns. Different levels of services of readiness to emergencies, technological, and economic resources are likely to result in very different adaptation capabilities to environmental changes and new problems. The different economic situations and demographic trends are likely to produce contrasts and conflicts in a condition of limited available resources and environmental stress.