931 resultados para change-point detection
Resumo:
A low-cost disposable was developed for rapid detection of the protein biomarker myoglobin (Myo) as a model analyte. A screen printed electrode was modified with a molecularly imprinted material grafted on a graphite support and incorporated in a matrix composed of poly(vinyl chloride) and the plasticizer o-nitrophenyloctyl ether. The protein-imprinted material (PIM) was produced by growing a reticulated polymer around a protein template. This is followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl methacrylate hydrochloride, and ethylene glycol dimethacrylate. The polymeric layer was then covalently bound to the graphitic support, and Myo was added during the imprinting stage to act as a template. Non-imprinted control materials (CM) were also prepared by omitting the Myo template. Morphological and structural analysis of PIM and CM by FTIR, Raman, and SEM/EDC microscopies confirmed the modification of the graphite support. The analytical performance of the SPE was assessed by square wave voltammetry. The average limit of detection is 0.79 μg of Myo per mL, and the slope is −0.193 ± 0.006 μA per decade. The SPE-CM cannot detect such low levels of Myo but gives a linear response at above 7.2 μg · mL−1, with a slope of −0.719 ± 0.02 μA per decade. Interference studies with hemoglobin, bovine serum albumin, creatinine, and sodium chloride demonstrated good selectivity for Myo. The method was successfully applied to the determination of Myo urine and is conceived to be a promising tool for screening Myo in point-of-care patients with ischemia.
Resumo:
Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
A gold screen printed electrode (Au-SPE) was modified by merging Molecular Imprinting and Self-Assembly Monolayer techniques for fast screening cardiac biomarkers in point-of-care (POC). For this purpose, Myoglobin (Myo) was selected as target analyte and its plastic antibody imprinted over a glutaraldehyde (Glu)/cysteamine (Cys) layer on the gold-surface. The imprinting effect was produced by growing a reticulated polymer of acrylamide (AAM) and N,N′-methylenebisacrylamide (NNMBA) around the Myo template, covalently attached to the biosensing surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were carried out in all chemical modification steps to confirm the surface changes in the Au-SPE. The analytical features of the resulting biosensor were studied by different electrochemical techniques, including EIS, square wave voltammetry (SWV) and potentiometry. The limits of detection ranged from 0.13 to 8 μg/mL. Only potentiometry assays showed limits of detection including the cut-off Myo levels. Quantitative information was also produced for Myo concentrations ≥0.2 μg/mL. The linear response of the biosensing device showed an anionic slope of ~70 mV per decade molar concentration up to 0.3 μg/mL. The interference of coexisting species was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids.
Resumo:
This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
A novel surface molecularly-imprinted (MI) material to detect myoglobin (Myo) using gold screen printed electrodes (SPE) was developed. The sensitive detection was carry out by introducing a carboxylic polyvinyl chloride (PVC-COOH) layer on gold SPE surface. Myo was attached to the surface of gold SPE/PVC-COOH and the vacant spaces around it were filled by polymerizing acrylamide and N,N-methylenebisacrylamide (cross-linker). This polymerization was initiated by ammonium persulphate. After removing the template, the obtained material was able to rebind Myo and discriminate it among other interfering species. Various characterization techniques including electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) confirmed the surface modification. This sensor seemed a promising tool for screening Myo in point-of-care.
Resumo:
A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed and optimised in both liquid and solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image management (enabled in any computer). The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue+Lightness. Under this condition, the sensor exhibited a limit of detection below 50 μM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity was ensured against drugs from other chemical groups than fluoroquinolones. Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample manipulation.
Resumo:
Oysters are edible organisms that are often ingested partially cooked or even raw, presenting therefore a very high risk to the consumers' health, especially in tropical regions. The presence of Vibrio cholerae and Vibrio parahaemolyticus in oysters sampled at an estuary in the Brazilian northeastern region was studied, with 300 oysters tested through an 8-months period. The salinity of the water at the sampling point varied between 3% and 27. V. cholerae was the most frequently detected species (33.3% of the samples), and of the 22 V. cholerae isolates, 20 were identified as non-O1/non-O139, with two of the colonies presenting a rough surface and most of remaining ones belonging to the Heiberg II fermentation group. V. parahaemolyticus was isolated from just one of the samples. Other bacteria such as Providencia spp., Klebsiella spp. and Morganella morganii were also isolated.
Resumo:
Since October 2001, the Adolfo Lutz Institute has been receiving vesicular fluids and scab specimens of patients from Paraíba Valley region in the São Paulo and Minas Gerais States and from São Patricio Valley, in the Goiás State. Epidemiological data suggested that the outbreaks were caused by Cowpox virus or Vaccinia virus. Most of the patients are dairy milkers that had vesiculo-pustular lesions on the hands, arms, forearms, and some of them, on the face. Virus particles with orthopoxvirus morphology were detected by direct electron microscopy (DEM) in samples of 49 (66.21%) patients of a total of 74 analyzed. Viruses were isolated in Vero cell culture and on chorioallantoic membrane (CAM) of embryonated chicken eggs. Among 21 samples submitted to PCR using primers for hemagglutinin (HA) gene, 19 were positive. Restriction digestion with TaqI resulted in four characteristic Vaccinia virus fragments. HA nucleotide sequences showed 99.9% similarity with Cantagalo virus, described as a strain of Vaccinia virus. The only difference observed was the substitution of one nucleotide in the position 616 leading to change in one amino acid of the protein in the position 206. The phylogenetic analysis showed that the isolates clustered together with Cantagalo virus, other Vaccinia strains and Rabbitpox virus.
Resumo:
Antigenic preparations from Sporothrix schenckii usually involve materials from mixed cultures of yeast and mycelia presenting cross-reactions with other deep mycoses. We have standardized pure yeast phase with high viability of the cells suitable to obtain specific excretion-secretion products without somatic contaminations. These excretion-secretion products were highly immunogenic and did not produce noticeable cross-reactions in either double immunodiffusion or Western blot. The antigenic preparation consists mainly of proteins with molecular weights between 40 and 70 kDa, some of them with proteolytic activity in mild acidic conditions. We also observed cathepsin-like activity at two days of culture and chymotrypsin-like activity at four days of culture consistent with the change in concentration of different secreted proteins. The proteases were able to cleave different subclasses of human IgG suggesting a sequential production of antigens and molecules that could interact and interfere with the immune response of the host.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores