982 resultados para cell extract
Resumo:
Purpose: To evaluate the in vitro antioxidant and anti-neuroinflammatory effects of Suaeda asparagoides ethylacetate extract (SAE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Methods: The antioxidative activity of SAE was evaluated by measuring 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity spectrometrometrically. Cell viability was evaluated by 3-(4, 5dimethylthiazol-2-yl)-2, 5- diphenyl-tetrazolium bromide (MTT) assay, while LPS-stimulated BV-2 microglia were used to study the expression and production of inflammatory mediators, including nitric oxide (NO), inducible NO synthase (iNOS) and tumor necrosis alpha (TNF-α). Results: Pretreatment with SAE prior to LPS treatment significantly inhibited excessive production of NO (p < 0.001 at 20, 40, 80 and 100 μg/mL) in a dose-dependent manner, and was associated with down-regulation of expression of inducible nitric oxide synthase (iNOS). SAE also suppressed the LPSinduced increase in TNF-α level (p < 0.01at concentrations of 40 and 80 μg/mL) in BV-2 cells. Furthermore, DPPH-generated free radicals were inhibited by SAE in a concentration-dependent manner. Conclusion: These results indicate that SAE possesses strong anti-oxidant properties, and inhibits excessive production of pro-inflammatory mediators, including NO, iNOS and TNF-α, in LPS-stimulated BV-2 cells
Resumo:
Purpose: To investigate the antioxidant and anticancer activities of phenolics from the leaf extract of Toona sinensis (TS). Methods: Acetone leaf extract of TS was screened for total phenolic and flavanoid contents, and the flanonoids were subjected to high performance liquid chromatographic (HPLC) analysis. Antioxidant properties were assessed via oxygen radical absorbance capacity (ORAC), peroxyl radical scavenging capacity (PSC) and cellular antioxidant activity (CAA), while anti-proliferative activity ins HepG2 cell line was assessed using methylene blue assay. Results: The extract contained 36.02 ± 0.24 mg of gallic acid equiv/g dry weight (DW) and 20.24 ± 1.73 mg of catechin equiv/g DW of total phenolic and total flavonoid, respectively. The levels of rutin and quercitrin were 0.51 and 19.55 mg/g, respectively. Epicatechin, gallic acid, quercitin, isoquercetin were not detected. The extract showed significant antioxidant potential and high anti-proliferation capacity with low cytotoxicity against HepG2 cell in vitro. The underlying mechanism of anti-proliferative effect was induction of apoptosis. Conclusion: TS leaf extract possesses significant in vitro antioxidant properties and anti-proliferative effect against HepG2 cells, which make it a potential anticancer drug source.
Resumo:
Purpose: To investigate the anti-hyperprolactinemic effect of Ficus pumila Linn. extract (FPLE) in rats. Methods: Hyperprolactinemic rats were generated by subcutaneous injection of metoclopramide dihydrochloride (50 mg/kg). A high dose (800 mg/kg), moderate dose (400 mg/kg), or low dose (200 mg/kg) of FPLE was administered into the stomach of hyperprolactinemic rats for 30 days, after which serum sex hormones and pituitary prolactin-positive cell number and mRNA expression were measured. Results: FPLE had a significant effect on measures of hyperprolactinemia. Compared with hyperprolactinemic rats without FPLE treatment, hyperprolactinemic rats that received a high dose of FPLE showed altered serum estradiol, progesterone, prolactin, follicle-stimulating hormone, and luteinizing hormone levels (p < 0.05), as well as decreased pituitary prolactin-positive cell number (p < 0.05) and mRNA expression (p < 0.05). Conclusion: FPLE can potentially be used as an anti-hyperprolactinemia treatment but further studies are required to ascertain its suitability.
Resumo:
Purpose: To evaluate the immune-modulatory activities of various plant parts Adansonia digitata L. using delayed-type hypersensitivity rat model. Methods: Defatted leaf, root bark and fruit pulp of A. digitata were extracted with methanol. Immunomodulatory activity of the methanol extracts (250 and 500 mg/kg) were evaluated in sheep RBC (SRBC)-induced delayed-type hypersensitivity model, cell mediated immune re-sponse and phagocytic activity using carbon clearance test. Results: The extracts exhibited significant increase in delayed-type hypersensitivity reaction, indicating the ability of the extracts to stimulate T-cells. It also increased SRBC induced anti-body titer in immunesuppressed rats, and produced significant increase in phagocytic index by rapid removal of carbon particles from the blood stream. Conclusion: These results indicate that methanol extracts of the leaf, root bark and fruit pulp of A. digitata hold promise as immunemodulatory agents.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Resumo:
PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.
Resumo:
Australia is currently well placed to contribute to the global growth of human stem cell research. However, as the science has progressed, authorities have had to deal with the ongoing challenges of regulating such a fast moving field of scientific endeavour. Australia’s past and current approach to regulating the use of embryos in human embryonic stem cell research provides an insight into how Australia may continue to adapt to future regulatory challenges presented by human stem cell research. In the broader context, a number of issues have been identified that may impact upon the success of future human stem cell research in Australia.
Resumo:
Human embryonic stem cell research promises to deliver in the future a whole range of therapeutic treatments, but currently governments in different jurisdictions must try to regulate this burgeoning area. Part of the problem has been, and continues to be, polarised community opinion on the use of human embryonic stem cells for research. This article compares the approaches of the Australian, United Kingdom and United States governments in regulating human embryonic stem cell research. To date, these governments have approached the issue through implementing legislation or policy to control research. Similarly, the three jurisdictions have viewed the patentability of human embryonic stem cell technologies in their own ways with different policies being adopted by the three patent offices. This article examines these different approaches and discusses the inevitable concerns that have been raised due to the lack of a universal approach in relation to the regulation of research; the patenting of stem cell technologies; and the effects patents granted are having on further human embryonic stem cell research.
Resumo:
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.