1000 resultados para capsule dynamics
Resumo:
Graphene has been reported with record-breaking properties which have opened up huge potential applications. A considerable research has been devoted to manipulate or modify the properties of graphene to target a more smart nanoscale device. Graphene and carbon nanotube hybrid structure (GNHS) is one of the promising graphene derivates, while their mechanical properties have been rarely discussed in literature. Therefore, such a studied is conducted in this paper basing on the large-scale molecular dynamics simulation. The target GNHS is constructed by considering two separate graphene layers that being connected by single-wall carbon nanotubes (SWCNTs) according to the experimental observations. It is found that the GNHSs exhibit a much lower yield strength, Young’s modulus, and earlier yielding comparing with a bilayer graphene sheet. Fracture of studied GNHSs is found to fracture located at the connecting region between carbon nanotubes (CNTs) and graphene. After failure, monatomic chains are normally observed at the front of the failure region, and the two graphene layers at the failure region without connecting CNTs will adhere to each other, generating a bilayer graphene sheet scheme (with a layer distance about 3.4 Å). This study will enrich the current understanding of the mechanical performance of GNHS, which will guide the design of GNHS and shed lights on its various applications.
Resumo:
Quantitative analysis is increasingly being used in team sports to better understand performance in these stylized, delineated, complex social systems. Here we provide a first step toward understanding the pattern-forming dynamics that emerge from collective offensive and defensive behavior in team sports. We propose a novel method of analysis that captures how teams occupy sub-areas of the field as the ball changes location. We used the method to analyze a game of association football (soccer) based upon a hypothesis that local player numerical dominance is key to defensive stability and offensive opportunity. We found that the teams consistently allocated more players than their opponents in sub-areas of play closer to their own goal. This is consistent with a predominantly defensive strategy intended to prevent yielding even a single goal. We also find differences between the two teams' strategies: while both adopted the same distribution of defensive, midfield, and attacking players (a 4:3:3 system of play), one team was significantly more effective both in maintaining defensive and offensive numerical dominance for defensive stability and offensive opportunity. That team indeed won the match with an advantage of one goal (2 to 1) but the analysis shows the advantage in play was more pervasive than the single goal victory would indicate. Our focus on the local dynamics of team collective behavior is distinct from the traditional focus on individual player capability. It supports a broader view in which specific player abilities contribute within the context of the dynamics of multiplayer team coordination and coaching strategy. By applying this complex system analysis to association football, we can understand how players' and teams' strategies result in successful and unsuccessful relationships between teammates and opponents in the area of play.
Resumo:
Capacity to produce data for performance analysis in sports has been enhanced in the last decade with substantial technological advances. However, current performance analysis methods have been criticised for the lack of a viable theoretical framework to assist on the development of fundamental principles that regulate performance achievement. Our aim in this paper is to discuss ecological dynamics as an explanatory framework for improving analysis and understanding of competitive performance behaviours. We argue that integration of ideas from ecological dynamics into previous approaches to performance analysis advances current understanding of how sport performance emerges from continuous interactions between individual players and teams. Exemplar data from previous studies in association football are presented to illustrate this novel perspective on performance analysis. Limitations of current ecological dynamics research and challenges for future research are discussed in order to improve the meaningfulness of information presented to coaches and managers.
Resumo:
This study investigated movement synchronization of players within and between teams during competitive association football performance. Cluster phase analysis was introduced as a method to assess synchronies between whole teams and between individual players with their team as a function of time, ball possession and field direction. Measures of dispersion (SD) and regularity (sample entropy – SampEn – and cross sample entropy – Cross-SampEn) were used to quantify the magnitude and structure of synchrony. Large synergistic relations within each professional team sport collective were observed, particularly in the longitudinal direction of the field (0.89 ± 0.12) compared to the lateral direction (0.73 ± 0.16, p < .01). The coupling between the group measures of the two teams also revealed that changes in the synchrony of each team were intimately related (Cross-SampEn values of 0.02 ± 0.01). Interestingly, ball possession did not influence team synchronization levels. In player–team synchronization, individuals tended to be coordinated under near in-phase modes with team behavior (mean ranges between −7 and 5° of relative phase). The magnitudes of variations were low, but more irregular in time, for the longitudinal (SD: 18 ± 3°; SampEn: 0.07 ± 0.01), compared to the lateral direction (SD: 28 ± 5°; SampEn: 0.06 ± 0.01, p < .05) on-field. Increases in regularity were also observed between the first (SampEn: 0.07 ± 0.01) and second half (SampEn: 0.06 ± 0.01, p < .05) of the observed competitive game. Findings suggest that the method of analysis introduced in the current study may offer a suitable tool for examining team’s synchronization behaviors and the mutual influence of each team’s cohesiveness in competing social collectives.
Resumo:
During the evolution of the music industry, developments in the media environment have required music firms to adapt in order to survive. Changes in broadcast radio programming during the 1950s; the Compact Cassette during the 1970s; and the deregulation of media ownership during the 1990s are all examples of changes which have heavily affected the music industry. This study explores similar contemporary dynamics, examines how decision makers in the music industry perceive and make sense of the developments, and reveals how they revise their business strategies, based on their mental models of the media environment. A qualitative system dynamics model is developed in order to support the reasoning brought forward by the study. The model is empirically grounded, but is also based on previous music industry research and a theoretical platform constituted by concepts from evolutionary economics and sociology of culture. The empirical data primarily consist of 36 personal interviews with decision makers in the American, British and Swedish music industrial ecosystems. The study argues that the model which is proposed, more effectively explains contemporary music industry dynamics than music industry models presented by previous research initiatives. Supported by the model, the study is able to show how “new” media outlets make old music business models obsolete and challenge the industry’s traditional power structures. It is no longer possible to expose music at one outlet (usually broadcast radio) in the hope that it will lead to sales of the same music at another (e.g. a compact disc). The study shows that many music industry decision makers still have not embraced the new logic, and have not yet challenged their traditional mental models of the media environment. Rather, they remain focused on preserving the pivotal role held by the CD and other physical distribution technologies. Further, the study shows that while many music firms remain attached to the old models, other firms, primarily music publishers, have accepted the transformation, and have reluctantly recognised the realities of a virtualised environment.
Resumo:
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.
Resumo:
The term ‘‘new media’’ has been in play for decades now, and one might be forgiven for wondering how much longer digital forms and platforms can really be called ‘‘new,’’ or even what the scholarship of new media contributes to knowledge. Is it possible to say new things about new media? We think so. This Companion not only demonstrates the variety, salience, and importance of new media studies but also proposes a distinctive approach to the topic : an approach we call ‘‘new media dynamics.’’ In this view, what’s interesting about ‘‘new media’’ is not novelty as such but dynamism. Capitalism, technology, social networks, and media all evolve and change, sometimes to our delight, sometimes our dismay. This incessant process of disruption, renewal, and eventual (if often partial) replacement is now one of humanity’s central experiences. This cutting-edge collection brings together a stellar array of the world’s top researchers, cultural entrepreneurs, and emerging scholars to give the dynamics of new media their first full-length, multidisciplinary, historical, and critical treatment. Across 34 chapters, an international line-up of the very best authors reflects on the historical, technical, cultural, and political changes that underlie the emergence of new media, as existing patterns and assumptions are challenged by the forces of ‘‘creative destruction’’ and innovation, both economic and cultural. At the same time they show that familiar themes and problems carry through from ‘‘old’’media – questions of identity, sexuality, politics, relationships, and meaning.
Resumo:
The safety of passengers is a major concern to airports. In the event of crises, having an effective and efficient evacuation process in place can significantly aid in enhancing passenger safety. Hence, it is necessary for airport operators to have an in-depth understanding of the evacuation process of their airport terminal. Although evacuation models have been used in studying pedestrian behaviour for decades, little research has been done in considering the evacuees’ group dynamics and the complexity of the environment. In this paper, an agent-based model is presented to simulate passenger evacuation process. Different exits were allocated to passengers based on their location and security level. The simulation results show that the evacuation time can be influenced by passenger group dynamics. This model also provides a convenient way to design airport evacuation strategy and examine its efficiency. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
Despite board meetings representing the main arena where directors discharge their duties and make critical corporate decisions, we know little about what occurs in the boardroom. Consequently, there is increasing academic interest in understanding how meetings are run and how directors participate. This study contributes to this emerging literature by exploring the impact of board meeting arrangements on directors’ interactions and perceptions of meeting effectiveness. We video-taped board meetings at two Australian corporations operating in the same industry and use an in-depth analysis of interactions and board processes to reveal that a rather small difference in meeting arrangements (i.e. the timing and length of meetings) had a significant influence on interaction patterns. Specifically, given significant amounts of environmental turbulence in the sector, director inclusiveness and participation were reduced as time pressure increased due to shorter meetings, lowering director perceptions of meeting effectiveness.
Resumo:
Affordance is an important concept in HCI. There are various interpretations of affordances but it has been difficult to use this concept for design purposes. Often the treatment of affordances in the current HCI literature has been as a one-to-one relationship between a user and an artefact. According to our views, affordance is a dynamic, always emerging relationship between a human and his environment. We believe that the social and cultural contexts within which an artefact is situated affect the way in which the artefact is used. Using a Structuration Theory approach, we argue that affordances need also be treated at a much broader level, encompassing social and cultural aspects. We suggest that affordances should be seen at three levels: single user, organizational (or work group) and societal. Focusing on the organizational level affordances, we provide details of several important factors that affect the emergence of affordances.
Resumo:
Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.
Resumo:
Dynamics is an essential core engineering subject and it is considered as one of the hardest subjects in the engineering discipline. Many students acknowledged that Dynamics is very hard to understand and comprehend the abstract concepts through traditional teaching methods with normal tutorials and assignments. In this study, we conducted an investigation on the application of visualization technique to help students learning the unit with the fundamental theory displayed in the physical space. The research was conducted based on the following five basic steps of Action Learning Cycle including: Identifying problem, Planning action, Implementing, Evaluating, and Reporting. Through our studies, we have concluded that visualization technique can definitely help students in learning and comprehending the abstract theories and concepts of Dynamics.
Resumo:
Dynamics is an essential core engineering subject. It includes high level mathematical and theoretical contents, and basic concepts which are abstract in nature. Hence, Dynamics is considered as one of the hardest subjects in the engineering discipline. To assist our students in learning this subject, we have conducted a Teaching & Learning project to study ways and methods to effectively teach Dynamics based on visualization techniques. The research project adopts the five basic steps of Action Learning Cycle. It is found that visualization technique is a powerful tool for students learning Dynamics and helps to break the barrier of students who perceived Dynamics as a hard subject.