907 resultados para camera link
Resumo:
Increasing dairy farm size and increase in automation in livestock production require that new methods are used to monitor animal health. In this study, a thermal camera was tested for its capacity to detect clinical mastitis. Mastitis was experimentally induced in 6 cows with 10 mu g of Escherichia coli lipopolysaccharide (LPS). The LPS was infused into the left forequarter of each cow, and the right forequarters served as controls. Clinical examination for systemic and local signs and sampling for indicators of inflammation in milk were carried out before morning and evening milking throughout the 5-d experimental period and more frequently on the challenge day. Thermal images of experimental and control quarters were taken at each sampling time from lateral and medial angles. The first signs of clinical mastitis were noted in all cows 2 h postchallenge and included changes in general appearance of the cows and local clinical signs in the affected udder quarter. Rectal temperature, milk somatic cell count, and electrical conductivity were increased 4 h postchallenge and milk N-acetyl-beta-D-glucosaminidase activity 8 h postchallenge. The thermal camera was successful in detecting the 1 to 1.5 degrees C temperature change on udder skin associated with clinical mastitis in all cows because temperature of the udder skin of the experimental and control quarters increased in line with the rectal temperature. Yet, local signs on the udder were seen before the rise in udder skin and body temperature. The udder represents a sensitive site for detection of any febrile disease using a noninvasive method. A thermal camera mounted in a milking or feeding parlor could detect temperature changes associated with clinical mastitis or other diseases in a dairy herd.
Resumo:
This paper focuses on a new high-frequency (HF) link dc-to-three-phase-ac power converter. The least number of switching devices among other HF link dc-to-three-phase-ac converters, improved power density due to the absence of devices of bidirectional voltage-blocking capability, simple commutation requirements, and isolation between input and output are the integral features of this topology. The commutation process of the converter requires zero portions in the link voltage. This causes a nonlinear distortion in the output three-phase voltages. The mathematical analysis is carried out to investigate the problem, and suitable compensation in modulating signal is proposed for different types of carrier. Along with the modified modulator structure, a synchronously rotating reference-frame-based control scheme is adopted for the three-phase ac side in order to achieve high dynamic performance. The effectiveness of the proposed scheme has been investigated and verified through computer simulations and experimental results with 1-kVA prototype.
Resumo:
Calibration of the CCD camera of the 1-m telescope at the Vainu Bappu Observatory, Kavalur, to the BVR system is reported here based on the observations of stars in the 'dipper asterism' in the open cluster M 67 (NGC 2682). Transformations involving B and V have negligible colour terms, while those involving R are slightly colour dependent. The possibility of using scale-down R band fluxes to estimate the continuum flux at H-alpha is investigated by comparing the counts in R band with those through an interference filter centred at H-alpha. The scaling factor is found to remain constant over a wide range of colours. The sensitivity of the telescope-filter-CCD combination is estimated to be 2.0 per cent, 8.3 per cent and 9.7 per cent in B, V and R bands, respectively. The star F117 appears to be a small-amplitude (approximately 0.05 mag) variable.
Resumo:
The loss and degradation of forest cover is currently a globally recognised problem. The fragmentation of forests is further affecting the biodiversity and well-being of the ecosystems also in Kenya. This study focuses on two indigenous tropical montane forests in the Taita Hills in southeastern Kenya. The study is a part of the TAITA-project within the Department of Geography in the University of Helsinki. The study forests, Ngangao and Chawia, are studied by remote sensing and GIS methods. The main data includes black and white aerial photography from 1955 and true colour digital camera data from 2004. This data is used to produce aerial mosaics from the study areas. The land cover of these study areas is studied by visual interpretation, pixel-based supervised classification and object-oriented supervised classification. The change of the forest cover is studied with GIS methods using the visual interpretations from 1955 and 2004. Furthermore, the present state of the study forests is assessed with leaf area index and canopy closure parameters retrieved from hemispherical photographs as well as with additional, previously collected forest health monitoring data. The canopy parameters are also compared with textural parameters from digital aerial mosaics. This study concludes that the classification of forest areas by using true colour data is not an easy task although the digital aerial mosaics are proved to be very accurate. The best classifications are still achieved with visual interpretation methods as the accuracies of the pixel-based and object-oriented supervised classification methods are not satisfying. According to the change detection of the land cover in the study areas, the area of indigenous woodland in both forests has decreased in 1955 2004. However in Ngangao, the overall woodland area has grown mainly because of plantations of exotic species. In general, the land cover of both study areas is more fragmented in 2004 than in 1955. Although the forest area has decreased, forests seem to have a more optimistic future than before. This is due to the increasing appreciation of the forest areas.
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.
Resumo:
Wireless mesh networks with multi-beam capability at each node through the use of multi-antenna beamforming are becoming practical and attracting increased research attention. Increased capacity due to spatial reuse and increased transmission range are potential benefits in using multiple directional beams in each node. In this paper, we are interested in low-complexity scheduling algorithms in such multi-beam wireless networks. In particular, we present a scheduling algorithm based on queue length information of the past slots in multi-beam networks, and prove its stability. We present a distributed implementation of this proposed algorithm. Numerical results show that significant improvement in delay performance is achieved using the proposed multi-beam scheduling compared to omni-beam scheduling. In addition, the proposed algorithm is shown to achieve a significant reduction in the signaling overhead compared to a current slot queue length approach.
Resumo:
Interactive visualization applications benefit from simplification techniques that generate good-quality coarse meshes from high-resolution meshes that represent the domain. These meshes often contain interesting substructures, called embedded structures, and it is desirable to preserve the topology of the embedded structures during simplification, in addition to preserving the topology of the domain. This paper describes a proof that link conditions, proposed earlier, are sufficient to ensure that edge contractions preserve the topology of the embedded structures and the domain. Excluding two specific configurations, the link conditions are also shown to be necessary for topology preservation. Repeated application of edge contraction on an extended complex produces a coarser representation of the domain and the embedded structures. An extension of the quadric error metric is used to schedule edge contractions, resulting in a good-quality coarse mesh that closely approximates the input domain and the embedded structures.
Resumo:
Flexible-link mechanisms are those linkage mechanisms (or structures) which are capable of motion by virtue of elastic deformation of one or more;links. In such mechanisms a single flexible link; can replace several rigid links and joints resulting in fewer links, fewer pin joints, reduced overall weight and reduced mechanical error. In spite of such clear advantages, contributions toward flexible-link mechanisms remain very scarce. The area of flexible-link mechanisms offers much scope for further exploration. This paper attempts to show the potential of flexible-link mechanisms in accomplishing a kinematic task like path generation. Synthesis of a four-bar mechanism with a flexible rocker for circular and straight line path generation is carried out. Displacement analysis of the structure is carried out using finite element method (FEM) and synthesis is formulated and solved as an optimization problem. Several numerical examples are presented for illustration. Based on the results obtained with these examples, the flexible-link mechanism considered shows good promise for-path generation.
Resumo:
A link failure in the path of a virtual circuit in a packet data network will lead to premature disconnection of the circuit by the end-points. A soft failure will result in degraded throughput over the virtual circuit. If these failures can be detected quickly and reliably, then appropriate rerouteing strategies can automatically reroute the virtual circuits that use the failed facility. In this paper, we develop a methodology for analysing and designing failure detection schemes for digital facilities. Based on errored second data, we develop a Markov model for the error and failure behaviour of a T1 trunk. The performance of a detection scheme is characterized by its false alarm probability and the detection delay. Using the Markov model, we analyse the performance of detection schemes that use physical layer or link layer information. The schemes basically rely upon detecting the occurrence of severely errored seconds (SESs). A failure is declared when a counter, that is driven by the occurrence of SESs, reaches a certain threshold.For hard failures, the design problem reduces to a proper choice;of the threshold at which failure is declared, and on the connection reattempt parameters of the virtual circuit end-point session recovery procedures. For soft failures, the performance of a detection scheme depends, in addition, on how long and how frequent the error bursts are in a given failure mode. We also propose and analyse a novel Level 2 detection scheme that relies only upon anomalies observable at Level 2, i.e. CRC failures and idle-fill flag errors. Our results suggest that Level 2 schemes that perform as well as Level 1 schemes are possible.
Resumo:
This paper deals with the system oriented analysis, design, modeling, and implementation of active clamp HF link three phase converter. The main advantage of the topology is reduced size, weight, and cost of the isolation transformer. However, violation of basic power conversion rules due to presence of the leakage inductance in the HF transformer causes over voltage stresses across the cycloconverter devices. It makes use of the snubber circuit necessary in such topologies. The conventional RCD snubbers are dissipative in nature and hence inefficient. The efficiency of the system is greatly improved by using regenerative snubber or active clamp circuit. It consists of an active switching device with an anti-parallel diode and one capacitor to absorb the energy stored in the leakage inductance of the isolation transformer and to regenerate the same without affecting circuit performance. The turn on instant and duration of the active device are selected such that it requires simple commutation requirements. The time domain expressions for circuit dynamics, design criteria of the snubber capacitor with two conflicting constrains (over voltage stress across the devices and the resonating current duration), the simulation results based on generalized circuit model and the experimental results based on laboratory prototype are presented.
Resumo:
We propose partial and full link reversal algorithms to bypass voids during geographic routing over duty-cycled wireless sensor networks. We propose a distributed approach that is oblivious to one-hop neighbor information. Upon termination of the algorithm, the resulting network is guaranteed to be destination-oriented. Further, to reduce the delays incurred under reactive link reversal, we propose the use of `pseudo-events', a preemptive link reversal strategy, that renders the network destination-oriented before the onset of a real event. A simulation study of the effectiveness of pseudo-events is also provided.
Resumo:
Backoff algorithms are typically employed in multiple-access networks (e.g., Ethernet) to recover from packet collisions. In this letter, we propose and carry out the analysis for three types of link-layer backoff schemes, namely, linear backoff, exponential backoff, and geometric backoff, on point-to-point wireless fading links where packet errors occur nonindependently. In such a scenario, the backoff schemes are shown to achieve better energy efficiency without compromising much on the link layer throughput performance.
Resumo:
We report here an experimental investigation for establishing and quantifying a link between the growth and decay characteristics of fiber Bragg gratings. One of the key aspects of our work is the determination of the defect energy distribution from the grating characteristics measured during their fabrication. We observe a strong correlation between the growth-based defect energy distribution and that obtained through accelerated aging experiments, paving the way for predicting the decay characteristics of fiber Bragg gratings from their growth data. Such a prediction is significant in simplifying the postfabrication steps required to enhance the thermal stability of fiber Bragg gratings. (c) 2011 Optical Society of America