970 resultados para cage stocking density
Resumo:
O objetivo deste trabalho foi avaliar a resposta hematológica e parasitológica de tambacus (Colossoma macropomum x Piaractus mesopotamicus) submetidos ao estresse de captura e a diferentes densidades de estocagem, em sistema de pesque-solte. Foram utilizados 210 peixes com peso médio inicial de 785,33±152,02 g e comprimento total médio de 34,43±2,21 cm, mantidos em viveiros escavados e divididos em três grupos: sem pesca e baixa densidade (G1), com pesca e baixa densidade (G2), e com pesca e alta densidade (G3). Não houve diferença significativa entre os valores médios da concentração de hemoglobina, do número de eritrócitos, da contagem diferencial de leucócitos e da glicose. Os peixes do grupo G3 apresentaram número maior de parasitos e trombócitos, e menor ganho de peso e hematócrito. A atividade de pesque-solte, aliada à alta densidade de estocagem, pode prejudicar o equilíbrio orgânico e o desempenho zootécnico, o que favorece a parasitose.
Resumo:
The objective of this work was to evaluate the hematological and parasitological responses of tambacu (Colossoma macropomum x Piaractus mesopotamicus) subjected to catch-and-release stress and to different stocking densities in a catch-and-release system. Two hundred and ten fish with mean initial weight of 785.33±152.02 g and mean total length of 34.43±2.21 cm were maintained in ponds and divided into three groups: without fishing and low density (G1), with fishing and low density (G2), and with fishing and high density (G3). No significant differences were observed between the mean values for hemoglobin concentration, erythrocyte number, differential counting of leukocytes, and glucose. The fish from the G3 group showed higher parasite and thrombocyte numbers, and lower weight gain and hematocrit. The activity of catch-and-release, associated with high stocking density, can disrupt organic balance and animal performance, favoring parasitosis.
Resumo:
Anaplasma marginale is endemic in tropical and subtropical areas around the world. Some studies have suggested that cows during peripartum may present a transient immunosuppression state and development of clinical signs of anaplasmosis. The aim of this study was to investigate the relationship between some risk factors and the seroprevalence of A. marginale in dairy cows during peripartum in Rio de Janeiro, Brazil. The risk factors analyzed in association with the prevalence of antibodies against A. marginale in dairy cows were calving season, reproductive experience, breed standard, tick infestations, stocking density, and milk yield. The antibodies against A. marginale were tested in indirect enzyme-linked immunosorbent assays. A primary screening using a 2 x k contingency table of the exposed variables with the outcomes was performed. All variables for which p < 0.20 were included in a fixed effects log regression. The risk factors investigated to anaplasmosis were calving (OR 2.61, IC 1.08-7.63), breed standard (OR 3.83, IC 0.08-0.28), reproductive experience (OR 33.7, IC 2.14-5.16), milk yield (OR 3.9, IC 2.24-7.03), Rhipicephalus microplus infestations (OR 10.3, IC 0.05-0.17), and stocking density (OR 22.3, IC 0.05-0.17). Low titers of antibodies against A. marginale during peripartum had been characterized as a period previous to development of clinical anaplasmosis. Thus, studies on anaplasmosis should consider each farm as an epidemiological unit, where environmental and immunological factors may influence the endemic status of the pathogen.
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of stocking density and food restriction in juvenile piapara (Leporinus elongatus) were studied by two experiments. In the first, 88 piaparas juveniles were stocked in three densities (0.13, 0.20 and 0.40 fish L-1) for 70 days. Were evaluated: weight gain, average consumption, specific growth rate and feed conversion. The experiment was conducted in completely randomized design with three treatments (0.13, 0.20 and 0.40 fish L-1) and four replicates. In the second experiment, 84 fish were divided into three treatments (RBD, with 4 replicates): control group (daily food); FDS group (animals fed on weekends) and Res 21 group (animals subjected to food restriction for 21 days). Highest stocking density resulted highest biomass produced. Fish subjected to food restriction for 21 days and animals fed on weekends group, displayed full compensatory growth.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Dry mass (DM) and total ammonia-N (TAN) excretion were determined in embryos, larvae (ZI-ZIX, Z = zoea ), and postlarvae (PL) at 1, 7, and 14 d after metamorphosis (PL1, PL7, and PL14) of Macrobrachium amazonicum. Animals in postmolt-intermolt (A-C) stages were sorted according to their developmental stages, and placed into incubation chambers (similar to 30 mL) for 2 h to quantify TAN excretion. After this period, analyses were carried out using Koroleff`s method for TAN determination. Individual TAN excretion generally increased throughout ontogenetic development and varied from 0.0090 +/- 0.0039 mu g TAN/individual/h in embryo to 1.041 +/- 0.249 mu g TAN/individual/h in PL14. There was no significant difference between embryo-ZIV and ZV-ZIX (P > 0.05), whereas PL1, PL7, and PL14 differed (P < 0.05) from each other. Higher increments in individual ammonia-N excretion were observed between ZIV-ZV, PL1-PL7, and PL7-PL14. Mass-specific excretion rates presented two groups, embryo-ZII (P > 0.05) and ZIII-PL14 (P > 0.05). The lowest value was found in embryo (0.17 +/- 0.07 mu g TAN/mg DM/h) and the maximum values in ZV and PL1 (0.65 +/- 0.25 and 0.64 +/- 0.27 mu g TAN/mg DM/h, respectively). Results indicate that metabolic rate is proportional to the body mass in M. amazonicum, during early life stages. Variations in ammonia excretion during this phase may be associated mainly with body size. Data obtained in the present study may be useful in developing and optimizing rearing techniques of M. amazonicum, such as the proportions between biofilter and rearing tank size, and stocking density in culture tanks or in transport bags.
Resumo:
Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.