929 resultados para cAMP-PKA signaling pathway


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced activity of receptor tyrosine kinases such as the PDGF β-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB–, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44mapk/p42mapk) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1–100 μM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44mapk/p42mapk was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 μM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB–induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1–100 μM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rβ, phosphatidylinositol 3′-kinase, and phospholipase C-γ1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20–50 μM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rβ and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myogenic cell differentiation is induced by Arg8-vasopressin, whereas high cAMP levels and protein kinase A (PKA) activity inhibit myogenesis. We investigated the role of type 4 phosphodiesterase (PDE4) during L6-C5 myoblast differentiation. Selective PDE4 inhibition resulted in suppression of differentiation induced by vasopressin. PDE4 inhibition prevented vasopressin-induced nuclear translocation of the muscle-specific transcription factor myogenin without affecting its overall expression level. The effects of PDE4 inhibition could be attributed to an increase of cAMP levels and PKA activity. RNase protection, reverse transcriptase PCR, immunoprecipitation, Western blot, and enzyme activity assays demonstrated that the PDE4D3 isoform is the major PDE4 expressed in L6-C5 myoblasts and myotubes, accounting for 75% of total cAMP-hydrolyzing activity. Vasopressin cell stimulation caused a biphasic increase of PDE4 activity, which peaked at 2 and 15 min and remained elevated for 48 h. In the continuous presence of vasopressin, cAMP levels and PKA activity were lowered. PDE4D3 overexpression increased spontaneous and vasopressin-dependent differentiation of L6-C5 cells. These results show that PDE4D3 plays a key role in the control of cAMP levels and differentiation of L6-C5 cells. Through the modulation of PDE4 activity, vasopressin inhibits the cAMP signal transduction pathway, which regulates myogenesis possibly by controlling the subcellular localization of myogenin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals by cAMP, the calcium ionophore ionomycin, and granulocyte/macrophage colony-stimulating factor. Jak1 kinase activity, interleukin 6-induced gene activation, Stat3 tyrosine phosphorylation, and DNA-binding were inhibited, as was activation of Jak1 and Stat1 by interferon gamma. The kinetics and requirement for new RNA and protein synthesis for inhibition of interleukin 6 by ionomycin and GM-CSF differed, but both agents increased the association of Jak1 with protein tyrosine phosphatase ID (SH2-containing phosphatase 2). Our results demonstrate that crosstalk with distinct signaling pathways can inhibit JAK-STAT signal transduction, and suggest approaches for modulating cytokine activity during immune responses and inflammatory processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent infection of the chestnut blight fungus Cryphonectria parasitica with the prototypic hypovirus CHVI-713 results in attenuation of fungal virulence (hypo-virulence) and reduced accumulation of the GTP-binding (G) protein a subunit CPG-1. Transgenic cosuppression of CPG-1 accumulation in the absence of virus infection also confers hypovirulence. We now report the use of mRNA differential display to examine the extent to which virus infection alters fungal gene transcript accumulation and to assess the degree to which modification of CPG-1 signal transduction contributes to this alteration. More than 400 PCR products were identified that either increased (296 products) or decreased (127 products) in abundance as a result of virus infection. Significantly, 65% of these products exhibited similar changes as a result of CPG-1 cosuppression in the absence of virus infection. We also report that both virus infection and CPG-1 cosuppression elevate cAMP levels 3- to 5-fold. Additionally, it was possible to mimic the effect of virus infection and CPG-1 cosuppression on transcript accumulation for representative fungal genes by drug-induced elevation of cAMP levels. These results strengthen and extend previous indications that hypovirus infection causes a significant and persistent alteration of fungal gene expression/transcript accumulation. They further show that this alteration is primarily mediated through modification of the CPG-1 signaling pathway and suggest that, similar to mammalian Gi alpha subunits, CPG-1 functions as a negative modulator of adenylyl cyclase. Finally, these results suggest a role for G-protein-regulated cAMP accumulation in hypovirus-mediated alteration of fungal gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the adverse effects of cannabinoids observed during pregnancy could be mediated via these cannabinoid receptors. Although the physiological significance of the cannabinoid ligand-receptor signaling in normal preimplantation embryo development is not yet clear, the regulation of embryonic cAMP and/or Ca2+ levels via this signaling pathway may be important for normal embryonic development and/or implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To determine the mechanism underlying the anti-hyperprolactinemia effects of Radix bupleuri extract (RBE) in rats. Methods: Rats were divided into six groups (n=10 each group): healthy controls, untreated hyperprolactinemic rats, hyperprolactinemic rats treated with bromocriptine (0.6 mg/kg), and hyperprolactinemic rats treated with RBE (4.8, 9.6, or 19.2 g/kg). After 30 days, hypothalamic protein levels of dopamine D2 receptor, protein kinase A (PKA), and cyclic adenosine monophosphate (cAMP) were determined. Results: Dopamine D2 receptor levels were lower in untreated hyperprolactinemic rats than in healthy controls (p < 0.01), but this decrease was attenuated by RBE (p < 0.05). Elevated PKA levels in untreated hyperprolactinemic rats (0.61 ± 0.04 μg/ml, p < 0.01) were decreased by RBE (4.8 g/kg, 0.42 ± 0.03 μg/ml, p < 0.05; 9.6 g/kg, 0.33 ± 0.02 μg/ml, p < 0.01; 19.2 g/kg, 0.27 ± 0.03 μg/ml, p < 0.01). Similarly, elevated cAMP levels in hyperprolactinemic rats (2.4 ± 0.4 ng/ml) were decreased by RBE (4.8 g/kg, 1.8 ± 0.3 ng/ml, p < 0.05; 9.6 g/kg, 1.5 ± 0.3 ng/ml, p < 0.01; 19.2 g/kg, 1.2 ± 0.2 ng/ml, p < 0.01). Conclusions: RBE anti-hyperprolactinemia activity is mediated by dopamine D2 receptor signaling via the cAMP/PKA pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The hedgehog signaling pathway is vital in early development, but then becomes dormant, except in some cancer tumours. Hedgehog inhibitors are being developed for potential use in cancer. Objectives/Methods: The objective of this evaluation is to review the initial clinical studies of the hedgehog inhibitor, GDC-0449, in subjects with cancer. Results: Phase I trials have shown that GDC-0449 has benefits in subjects with metastatic or locally advanced basal-cell carcinoma and in one subjects with medulloblastoma. GDC-0449 was well tolerated. Conclusions: Long term efficacy and safety studies of GDC-0449 in these conditions and other solid cancers are now underway. These clinical trials with GDC-0449, and trials with other hedgehog inhibitors, will reveal whether it is beneficial and safe to inhibit the hedgehog pathway, in a wide range of solid tumours or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The p38 mitogen-activated protein kinase (MAPK) signal transduction pathway is involved in a variety of inflammatory responses, including cytokine generation, cell differentiation proliferation and apoptosis. Here, we examined the effects of systemic p38 MAPK inhibition on cartilage cells and osteoarthritis (OA) disease progression by both in vitro and in vivo approaches. Methods p38 kinase activity was evaluated in normal and OA cartilage cells by measuring the amount of phosphorylated protein. To examine the function of p38 signaling pathway in vitro, normal chondrocytes were isolated and differentiated in the presence or absence of p38 inhibitor; SB203580 and analysed for chondrogenic phenotype. Effect of systemic p38 MAPK inhibition in normal and OA (induced by menisectomy) rats were analysed by treating animals with vehicle alone (DMS0) or p38 inhibitor (SB203580). Damage to the femur and tibial plateau was evaluated by modified Mankin score, histology and immunohistochemistry. Results Our in vitro studies have revealed that a down-regulation of chondrogenic and increase of hypertrophic gene expression occurs in the normal chondrocytes, when p38 is neutralized by a pharmacological inhibitor. We further observed that the basal levels of p38 phosphorylation were decreased in OA chondrocytes compared with normal chondrocytes. These findings together indicate the importance of this pathway in the regulation of cartilage physiology and its relevance to OA pathogenesis. At in vivo level, systematic administration of a specific p38 MAPK inhibitor, SB203580, continuously for over a month led to a significant loss of proteoglycan; aggrecan and cartilage thickness. On the other hand, SB203580 treated normal rats showed a significant increase in TUNEL positive cells, cartilage hypertrophy markers such as Type 10 collagen, Runt-related transcription factor and Matrix metalloproteinase-13 and substantially induced OA like phenotypic changes in the normal rats. In addition, menisectomy induced OA rat models that were treated with p38 inhibitor showed aggravation of cartilage damage. Conclusions In summary, this study has provided evidence that the component of the p38 MAPK pathway is important to maintain the cartilage health and its inhibition can lead to severe cartilage degenerative changes. The observations in this study highlight the possibility of using activators of the p38 pathway as an alternative approach in the treatment of OA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Degradative enzymes, such as A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinases (MMPs), play key roles in osteoarthritis (OA) development. The aim of the present study was to investigate if cross-talk between subchondral bone osteoblasts (SBOs) and articular cartilage chondrocytes (ACCs) in OA alters the expression and regulation of ADAMTS5, ADAMTS4, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9 and MMP-13, and also to test the possible involvement of mitogen activated protein kinase (MAPK) signaling pathway during this process. Methods: ACCs and SBOs were isolated from normal and OA patients. An in vitro co-culture model was developed to study the regulation of ADAMTS and MMPs under normal and OA joint cross-talk conditions. MAPK-ERK inhibitor, PD98059 was applied to delineate the involvement of specific pathway during this interaction process. Results: Indirect co-culture of OA SBOs with normal ACCs resulted in significantly increased expression of ADAMTS5, ADAMTS4, MMP-2, MMP-3 and MMP-9 in ACCs, whereas co-culture of OA ACCs led to increased MMP-1 and MMP-2 expression in normal SBOs. The upregulation of ADAMTS and MMPs under these conditions was correlated with activation of the MAPK-ERK1/2 signaling pathway and the addition of the MAPK-ERK inhibitor, PD98059, reversed the overexpression of ADAMTS and MMPs in co-cultures. Conclusion: In summary, we believe, these results add to the evidence that in human OA, altered bi-directional signals transmitted between SBOs and ACCs significantly impacts the critical features of both cartilage and bone by producing abnormal levels of ADAMTS and MMPs. Furthermore, we have demonstrated for the first time that this altered cross-talk was mediated by the phosphorylation of MAPK-ERK1/2 signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are multi-potent cells that can differentiate into various cell types and have been used widely in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with the activation of the PI3K/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functinalities. Biomaterials have been modified in their properties, surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mammary gland, Wnt signals are strongly implicated in initial development of the mammary rudiments and in the ductal branching and alveolar morphogenesis that occurs during pregnancy. Previously, we identified two Wnt signaling pathway-implicated genes, PPP3CA and MARK4, as having a role in more aggressive and potentially metastatic breast tumors. In this study, we examined two SNPs within PPP3CA and MARK4 in an Australian case-control study population for a potential role in human breast cancers. 182 cases and 180 controls were successfully genotyped for the PPP3CA SNP (rs2850328) and 182 cases and 177 controls were successfully genotyped for the MARK4 SNP (rs2395) using High Resolution Melt (HRM) analysis. Genotypes of randomly selected samples for both SNPs were validated by dye terminator sequencing. Chi-square tests were performed to determine any significant differences in the genotype and allele frequencies between the cases and controls. Chi-square analysis showed no statistically significant difference (p > .05) for genotype frequencies between cases and controls for rs2850328 (χ2 = 1.2, p = .5476) or rs2395 (χ2 = .3, p = .8608). Similarly, no statistical difference was observed for allele frequencies for rs2850328 (χ2 = .68, p = .4108) or rs2395 (χ2 = .02, p = .893). Even though an association of the polymorphisms rs2850328 and rs2395 and breast cancer was not detected in our case-control study population, other variants within the PPP3CA and MARK4 genes may still be associated with breast cancer, as both genes are implicated with processes involved in the disease as well as their mutual partaking in the Wnt signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Our recent study indicated that subchondral bone pathogenesis in osteoarthritis (OA) is associated with osteocyte morphology and phenotypic abnormalities. However, the mechanism underlying this abnormality needs to be identified. In this study we investigated the effect of extracellular matrix (ECM) produced from normal and OA bone on osteocytic cells function. METHODS: De-cellularized matrices, resembling the bone provisional ECM secreted from primary human subchondral bone osteoblasts (SBOs) of normal and OA patients were used as a model to study the effect on osteocytic cells. Osteocytic cells (MLOY4 osteocyte cell line) cultured on normal and OA derived ECMs were analyzed by confocal microscopy, scanning electron microscopy (SEM), cell attachment assays, zymography, apoptosis assays, qRT-PCR and western blotting. The role of integrinβ1 and focal adhesion kinase (FAK) signaling pathways during these interactions were monitored using appropriate blocking antibodies. RESULTS: The ECM produced by OA SBOs contained less mineral content, showed altered organization of matrix proteins and matrix structure compared with the matrices produced by normal SBOs. Culture of osteocytic cells on these defective OA ECM resulted in a decrease of integrinβ1 expression and the de-activation of FAK cell signaling pathway, which subsequently affected the initial osteocytic cell's attachment and functions including morphological abnormalities of cytoskeletal structures, focal adhesions, increased apoptosis, altered osteocyte specific gene expression and increased Matrix metalloproteinases (MMP-2) and -9 expression. CONCLUSION: This study provides new insights in understanding how altered OA bone matrix can lead to the abnormal osteocyte phenotypic changes, which is typical in OA pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a de. ning structural feature of organ development. Current interest in this process, which is described as an epithelial- mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and research in EMT are currently at a high level, as seen by the attendance at the recent EMT meeting in Vancouver, Canada (October 1-3, 2005). The meeting, which was hosted by The EMT International Association, was the second international EMT meeting, the . rst being held in Port Douglas, Queensland, Australia in October 2003. The EMT International Association was formed in 2002 to provide an international body for those interested in EMT and the reverse process, mesenchymal-epithelial transition, and, most importantly, to bring together those working on EMT in development, cancer, . brosis, and pathology. These themes continued during the recent meeting in Vancouver. Discussion at the Vancouver meeting spanned several areas of research, including signaling pathway activation of EMT and the transcription factors and gene targets involved. Also covered in detail was the basic cell biology of EMT and its role in cancer and . brosis, as well as the identi. cation of new markers to facilitate the observation of EMT in vivo. This is particularly important because the potential contribution of EMT during neoplasia is the subject of vigorous scientific debate (Tarin, D., E.W. Thompson, and D.F. Newgreen. 2005. Cancer Res. 65:5996-6000; Thompson, E.W., D.F. Newgreen, and D. Tarin. 2005. Cancer Res. 65:5991-5995).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm–BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR–Ras–MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR–Ras–MAPK signaling pathway, by affecting Mek levels during Drosophila development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background There is increasing evidence supporting the concept of cancer stem cells (CSCs), which are responsible for the initiation, growth and metastasis of tumors. CSCs are thus considered the target for future cancer therapies. To achieve this goal, identifying potential therapeutic targets for CSCs is essential. Methods We used a natural product of vitamin E, gamma tocotrienol (gamma-T3), to treat mammospheres and spheres from colon and cervical cancers. Western blotting and real-time RT-PCR were employed to identify the gene and protein targets of gamma-T3 in mammospheres. Results We found that mammosphere growth was inhibited in a dose dependent manner, with total inhibition at high doses. Gamma-T3 also inhibited sphere growth in two other human epithelial cancers, colon and cervix. Our results suggested that both Src homology 2 domain-containing phosphatase 1 (SHP1) and 2 (SHP2) were affected by gamma-T3 which was accompanied by a decrease in K- and H-Ras gene expression and phosphorylated ERK protein levels in a dose dependent way. In contrast, expression of self-renewal genes TGF-beta and LIF, as well as ESR signal pathways were not affected by the treatment. These results suggest that gamma-T3 specifically targets SHP2 and the RAS/ERK signaling pathway. Conclusions SHP1 and SHP2 are potential therapeutic targets for breast CSCs and gamma-T3 is a promising natural drug for future breast cancer therapy.