989 resultados para c-Myc


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Der kanonische Wnt Signalweg ist durch Regulation einer Vielzahl von Zielgenen in unterschiedliche Prozesse wie Entwicklung, Wachstum und Differenzierung involviert. Fehlregulation des Signalwegs kann zur Tumorentstehung führen. Die exakte Rolle des Wnt Signalwegs und seiner Zielgene in der karzinogenen Kaskade ist noch nicht genau bekannt. In dieser Arbeit sollte die Beteiligung der Wnt Zielgene c-MYC, CCND1 (kodiert Cyclin D1) und VEGF an der Karzinogenese untersucht werden. Um die Funktionen der Wnt Zielgene und ihre zellulären Effekte unabhängig voneinander untersuchen zu können, wurden die Mengen der entsprechenden Transkriptionsprodukte durch siRNA (short interfering RNA) gezielt verringert. Die Konsequenzen der Inaktivierung wurden in Kolon- und Zervixkarzinomzelllinien untersucht, wobei die zellulären Parameter Proliferation, Apoptose, Metabolismus sowie Migration und Adhäsion untersucht wurden. Dabei konnte beobachtet werden, dass der Wnt Signalweg mit seinen Zielgenen Cyclin D1 und c-MYC die Proliferation mit dem Energiemetabolismus von Tumorzellen verknüpft. Darüber hinaus konnte gezeigt werden, dass Cyclin D1 an der Regulation der zelluläre Migration und Adhäsion beteiligt ist, während VEGF die Apoptose abhängig vom zellulären Kontext inhibiert. Diese Ergebnisse liefern erste Hinweise auf die funktionelle Rolle der verschiedenen Zielgene im Prozess der Karzinogenese in Tumoren mit aktiviertem Wnt Signalweg. Damit ist diese Arbeit ein möglicher Ausgangspunkt für Studien mit dem Ziel der gezielten therapeutischen Beeinflussung des Wnt Signalwegs auf Ebene der Zielgene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’infiammazione cronica è un fattore di rischio di insorgenza del cancro, e la citochina infiammatoria IL-6 gioca un ruolo importante nella tumorigenesi. In questo studio abbiamo dimostrato che L’IL-6 down-regola l'espressione e l'attività di p53. In linee cellulari umane, IL-6 stimola la trascrizione dell’rRNA mediante espressione della proteina c-myc a livello post-trascrizionale in un meccanismo p38MAPK-dipendente. L'up-regolazione della biogenesi ribosomiale riduce l'espressione di p53 attraverso l'attivazione della via della proteina ribosomale-MDM2. La down-regolazione di p53 produce l’acquisizione di modifiche fenotipiche e funzionali caratteristiche della epitelio mesenchimale di transizione, un processo associato a trasformazione maligna e progressione tumorale. I nostri dati mostrano che questi cambiamenti avvengono anche nelle cellule epiteliali del colon di pazienti affetti da colite ulcerosa, un esempio rappresentativo di una infiammazione cronica soggetta a trasformazione neoplastica, che scompaiono dopo trattamento con farmaci antinfiammatori. Questi risultati svelano un nuovo effetto oncogenico indotto dall’IL-6 che può contribuire notevolmente ad aumentare il rischio di sviluppare il cancro non solo in pazienti con infiammazioni croniche, ma anche in quei pazienti con condizioni patologiche caratterizzate da elevato livello di IL-6 nel plasma, quali l'obesità e e il diabete mellito di tipo 2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an urgent need to improve the performance of urine cytology for the diagnosis of bladder cancer. In preliminary studies, telomerase activity evaluated by telomeric repeat amplification protocol (TRAP) assay and chromosomal aneuploidy detected by fluorescence in situ hybridization (FISH) in the diagnosis of bladder cancer have produced important results. Urine cell-free (UCF) DNA has also been proposed as a potential marker for early bladder cancer diagnosis. In the first study the diagnostic performance of TRAP assay and FISH analysis was assessed, while the second study evaluated the potential role of UCF DNA integrity in early bladder cancer diagnosis. In the first cross-sectional study, 289 consecutive patients who presented with urinary symptoms underwent cystoscopy and cytology evaluation. In the second study, UCF DNA was isolated from 51 bladder cancer patients, 46 symptomatic patients, and 32 healthy volunteers. c-Myc, BCAS1 and HER2 gene sequences longer than 250 bp were quantified by real time PCR to verify UCF DNA integrity. In the first study, sensitivity and specificity were 0.39 and 0.83, respectively, for cytology; 0.66 and 0.72 for TRAP; 0.78 and 0.60 for the cytology and TRAP combination; 0.78 and 0.78 for the cytology, TRAP and FISH combination; and 0.65 and 0.93 for the TRAP and FISH combination. In the second study, at the best cutoff of 0.1 ng/µl, UCF DNA integrity analysis showed a sensitivity of 0.73 and a specificity of 0.84 in healthy individuals and 0.83 in symptomatic patients. The preliminary results suggest that these biomarkers could potentially be used for the early diagnosis of bladder cancer, especially in high-risk populations (e.g, symptomatic individuals exposed to occupational risk) who may benefit from the use of noninvasive diagnostic tests in terms of cost-benefit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. The second part of this work is the clinical, molecular and functional description of a paradigmatic case of primary refractory Burkitt lymphoma characterized by spatial intratumor heterogeneity for the TP53 mutational status, high expression levels of genomic instability and DDR activation markers, primary resistance to chemotherapy and exquisite sensitivity to DDR inhibitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The identification of molecular processes involved in cancer development and prognosis opened avenues for targeted therapies, which made treatment more tumor-specific and less toxic than conventional therapies. One important example is the epidermal growth factor receptor (EGFR) and EGFR-specific inhibitors (i.e. erlotinib). However, challenges such as drug resistance still remain in targeted therapies. Therefore, novel candidate compounds and new strategies are needed for improvement of therapy efficacy. Shikonin and its derivatives are cytotoxic constituents in traditional Chinese herbal medicine Zicao (Lithospermum erythrorhizin). In this study, we investigated the molecular mechanisms underlying the anti-cancer effects of shikonin and its derivatives in glioblastoma cells and leukemia cells. Most of shikonin derivatives showed strong cytotoxicity towards erlotinib-resistant glioblastoma cells, especially U87MG.ΔEGFR cells which overexpressed a deletion-activated EGFR (ΔEGFR). Moreover, shikonin and some derivatives worked synergistically with erlotinib in killing EGFR-overexpressing cells. Combination treatment with shikonin and erlotinib overcame the drug resistance of these cells to erlotinib. Western blotting analysis revealed that shikonin inhibited ΔEGFR phosphorylation and led to corresponding decreases in phosphorylation of EGFR downstream molecules. By means of Loewe additivity and Bliss independence drug interaction models, we found erlotinb and shikonin or its derivatives corporately suppressed ΔEGFR phosphorylation. We believed this to be a main mechanism responsible for their synergism in U87MG.ΔEGFR cells. In leukemia cells, which did not express EGFR, shikonin and its derivatives exhibited even greater cytotoxicity, suggesting the existence of other mechanisms. Microarray-based gene expression analysis uncovered the transcription factor c-MYC as the commonly deregulated molecule by shikonin and its derivatives. As validated by Western blotting analysis, DNA-binding assays and molecular docking, shikonin and its derivatives bound and inhibited c-MYC. Furthermore, the deregulation of ERK, JNK MAPK and AKT activity was closely associated with the reduction of c-MYC, indicating the involvement of these signaling molecules in shikonin-triggered c-MYC inactivation. In conclusion, the inhibition of EGFR signaling, synergism with erlotinib and targeting of c-MYC illustrate the multi-targeted feature of natural naphthoquinones such as shikonin and derivatives. This may open attractive possibilities for their use in a molecular targeted cancer therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The c-Src kinase regulates cancer cell invasion through inhibitor of DNA binding/differentiation 1 (ID1). Src and ID1 are frequently overexpressed in human lung adenocarcinoma. The current study aimed at identifying microRNAs (miRNAs) involved in the Src-ID1 signaling in lung cancer. Incubation of lung cancer cells with the Src inhibitor saracatinib led to the upregulation of several miRNAs including miR-29b, which was the most highly upregulated miRNA with predicted binding to the ID1 3'-untranslated region (UTR). Luciferase reporter assays confirmed direct binding of miR-29b to the ID1 3'-UTR. Expression of miR-29b suppressed ID1 levels and significantly reduced migration and invasion. Expression of antisense-miR-29b (anti-miR-29b), on the other hand, enhanced ID1 mRNA and protein levels, and significantly increased lung cancer cell migration and invasion, a hallmark of the Src-ID1 pathway. The ectopic expression of ID1 in miR-29b-overexpressing cells was able to rescue the migratory potential of these cells. Both, anti-miR-29b and ID1 overexpression diminished the effects of the Src inhibitors saracatinib and dasatinib on migration and invasion. Saracatinib and dasatinib decreased c-Myc transcriptional repression on miR-29b and led to increased ID1 protein levels, whereas forced expression of c-Myc repressed miR-29b and induced ID1. In agreement, we showed direct recruitment of c-Myc to the miR-29b promoter. miR-29b was significantly downregulated in primary lung adenocarcinoma samples compared with matched alveolar lung tissue, and miR-29b expression was a significant prognostic factor for patient outcome. These results suggest that miR-29b is involved in the Src-ID1 signaling pathway, is dysregulated in lung adenocarcinoma and is a potential predictive marker for Src kinase inhibitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Cancer initiation and progression might be driven by small populations of cells endowed with stem cell-like properties. Here we comparatively addressed the expression of genes encoding putative stemness regulators including c-Myc, Klf4, Nanog, Oct4A and Sox2 genes in benign prostatic hyperplasia (BPH) and prostate cancer (PCA). METHODS: Fifty-eight PCA and thirty-nine BPH tissues samples were used for gene expression analysis, as evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of specific Klf4 isoforms was tested by conventional PCR. Klf4 specific antibodies were used for protein detection in a tissue microarray including 404 prostate samples. RESULTS: Nanog, Oct4A and Sox2 genes were comparably expressed in BPH and PCA samples, whereas c-Myc and Klf4 genes were expressed to significantly higher extents in PCA than in BPH specimens. Immunohistochemical studies revealed that Klf4 protein is detectable in a large majority of epithelial prostatic cells, irrespective of malignant transformation. However, in PCA, a predominantly cytoplasmic location was observed, consistent with the expression of a differentially spliced Klf4α isoform. CONCLUSION: Klf4 is highly expressed at gene and protein level in BPH and PCA tissues but a cytoplasmic location of the specific gene product is predominantly detectable in malignant cells. Klf4 location might be of critical relevance to steer its functions during oncogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a new method for fitting proportional hazards models with error-prone covariates. Regression coefficients are estimated by solving an estimating equation that is the average of the partial likelihood scores based on imputed true covariates. For the purpose of imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox partial likelihood approach when the measurement error has a degenerative distribution. Simulations indicate high efficiency and robustness. We consider the special case where error-prone replicates are available on the unobserved true covariates. As expected, increasing the number of replicate for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a genetic marker, c-myc expression level, is subject to measurement error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies could demonstrate, that the naturally occuring polyphenol resveratrol inhibits cell growth of colon carcinoma cells at least in part by inhibition of protooncogene ornithine decarboxylase (ODC). The objective of this study was to provide several lines of evidence suggesting that the induction of ceramide synthesis is involved in this regulatory mechanisms. Cell growth was determined by BrdU incorporation and crystal violet staining. Ceramide concentrations were detected by HPLC-coupled mass-spectrometry. Protein levels were examined by Western blot analysis. ODC activity was assayed radiometrically measuring [(14)CO(2)]-liberation. A dominant-negative PPARgamma mutant was transfected in Caco-2 cells to suppress PPARgamma-mediated functions. Antiproliferative effects of resveratrol closely correlate with a dose-dependent increase of endogenous ceramides (p<0.001). Compared to controls the cell-permeable ceramide analogues C2- and C6-ceramide significantly inhibit ODC-activity (p<0.001) in colorectal cancer cells. C6-ceramide further diminished protein levels of protooncogenes c-myc (p<0.05) and ODC (p<0.01), which is strictly related to the ability of ceramides to inhibit cell growth in a time- and dose-dependent manner. These results were further confirmed using inhibitors of sphingolipid metabolism, where only co-incubation with a serine palmitoyltransferase (SPT) inhibitor could significantly counteract resveratrol-mediated actions. These data suggest that the induction of ceramide de novo biosynthesis but not hydrolysis of sphingomyelin is involved in resveratrol-mediated inhibition of ODC. In contrast to the regulation of catabolic spermidine/spermine acetyltransferase by resveratrol, inhibitory effects on ODC occur PPARgamma-independently, indicating independent pathways of resveratrol-action. Due to our findings resveratrol could show great chemopreventive and therapeutic potential in the treatment of colorectal cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We recently reported that the pathogenesis of pemphigus vulgaris (PV), an autoimmune blistering skin disorder, is driven by the accumulation of c-Myc secondary to abrogation of plakoglobin (PG)-mediated transcriptional c-Myc suppression. PG knock-out mouse keratinocytes express high levels of c-Myc and resemble PVIgG-treated wild-type keratinocytes in most respects. However, they fail to accumulate nuclear c-Myc and loose intercellular adhesion in response to PVIgG-treatment like wild-type keratinocytes. This suggested that PG is also required for propagation of the PVIgG-induced events between augmented c-Myc expression and acantholysis. Here, we addressed this possibility by comparing PVIgG-induced changes in the desmosomal organization between wild-type and PG knock-out keratinocytes. We found that either bivalent PVIgG or monovalent PV-Fab (known to trigger blister formation in vivo) disrupt the linear organization of all major desmosomal components along cell borders in wild-type keratinocytes, simultaneously with a reduction in intercellular adhesive strength. In contrast, PV-Fab failed to affect PG knock-out keratinocytes while PVIgG cross-linked their desmosomal cadherins without significantly affecting desmoplakin. These results identify PG as a principle effector of the PVIgG-induced signals downstream of c-Myc that disrupt the desmosomal plaque at the plasma membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transforming growth factor-b (TGF-b) is a cytokine that plays essential roles in regulating embryonic development and tissue homeostasis. In normal cells, TGF-b exerts an anti-proliferative effect. TGF-b inhibits cell growth by controlling a cytostatic program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are resistant to the anti-proliferative effect of TGF-b. In several types of tumors, particularly those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-b has been attributed to TGF-b receptor or Smad mutations. However, these mutations are absent from many other types of tumors that are resistant to TGF-b-mediated growth inhibition. The transcription factor encoded by the homeobox patterning gene DLX4 is overexpressed in a wide range of malignancies. In this study, I demonstrated that DLX4 blocks the anti-proliferative effect of TGF-b by disabling key transcriptional control mechanisms of the TGF-b cytostatic program. Specifically, DLX4 blocked the ability of TGF-b to induce expression of p15Ink4B and p21WAF1/Cip1 by directly binding to Smad4 and to Sp1. Binding of DLX4 to Smad4 prevented Smad4 from forming transcriptional complexes with Smad2 and Smad3, whereas binding of DLX4 to Sp1 inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc, a repressor of p15Ink4B and p21WAF1/Cip1 transcription, independently of TGF-b signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-b cytostatic program could explain in part the resistance of tumors to the anti-proliferative effect of TGF-b. This study provides a molecular explanation as to why tumors are resistant to the anti-proliferative effect of TGF-b in the absence of mutations in the TGF-b signaling pathway. Furthermore, this study also provides insights into how aberrant activation of a developmental patterning gene promotes tumor pathogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neuronal repressor REST (RE1-silencing transcription factor; also called NRSF) is expressed at high levels in mouse embryonic stem (ES) cells, but its role in these cells is unclear. Here we show that REST maintains self-renewal and pluripotency in mouse ES cells through suppression of the microRNA miR-21. We found that, as with known self-renewal markers, the level of REST expression is much higher in self-renewing mouse ES cells than in differentiating mouse ES (embryoid body, EB) cells. Heterozygous deletion of Rest (Rest+/-) and its short-interfering-RNA-mediated knockdown in mouse ES cells cause a loss of self-renewal-even when these cells are grown under self-renewal conditions-and lead to the expression of markers specific for multiple lineages. Conversely, exogenously added REST maintains self-renewal in mouse EB cells. Furthermore, Rest+/- mouse ES cells cultured under self-renewal conditions express substantially reduced levels of several self-renewal regulators, including Oct4 (also called Pou5f1), Nanog, Sox2 and c-Myc, and exogenously added REST in mouse EB cells maintains the self-renewal phenotypes and expression of these self-renewal regulators. We also show that in mouse ES cells, REST is bound to the gene chromatin of a set of miRNAs that potentially target self-renewal genes. Whereas mouse ES cells and mouse EB cells containing exogenously added REST express lower levels of these miRNAs, EB cells, Rest+/- ES cells and ES cells treated with short interfering RNA targeting Rest express higher levels of these miRNAs. At least one of these REST-regulated miRNAs, miR-21, specifically suppresses the self-renewal of mouse ES cells, corresponding to the decreased expression of Oct4, Nanog, Sox2 and c-Myc. Thus, REST is a newly discovered element of the interconnected regulatory network that maintains the self-renewal and pluripotency of mouse ES cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: We tested the hypothesis that the proliferative estrogen effect on the endometrium is enhanced in obese vs lean animals. STUDY DESIGN: Using Zucker fa/fa obese rats and lean control, we examined endometrial cell proliferation and the expression patterns of certain estrogen-regulated proproliferative and antiproliferative genes after short-term treatment with estradiol. RESULTS: No significant morphologic/histologic difference was seen between the obese rats and the lean rats. Estrogen-induced proproliferative genes cyclin A and c-Myc messenger RNA expression were significantly higher in the endometrium of obese rats compared with those of the lean control. Expression of the antiproliferative gene p27Kip1 was suppressed by estrogen treatment in both obese and lean rats; however, the decrease was more pronounced in obese rats. Estrogen more strongly induced the antiproliferative genes retinaldehyde dehydrogenases 2 and secreted frizzled-related protein 4 in lean rats but had little or no effect in obese rats. CONCLUSION: Enhancement of estrogen-induced endometrial proproliferative gene expression and suppression of antiproliferative gene expression was seen in the endometrium of obese vs lean animals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) is known to have antiproliferative effects on a wide variety of tumor cells but proliferative effects on normal cells. However, the molecular basis for such differences in the action of TNF are unknown. The overall objectives of my research are to investigate the role of oncogenes in TNF sensitivity and delineate some of the molecular mechanisms involved in TNF sensitivity and resistance. To accomplish these objectives, I transfected TNF-resistant C3H mouse embryo fibroblasts (10T1/2) with an activated Ha-ras oncogene and determined whether these cells exhibit altered sensitivity to TNF. The results indicated that 10T1/2 cells transfected with an activated Ha-ras oncogene (10T-EJ) not only produced tumors in nude mice but also exhibited extreme sensitivity to cytolysis by TNF. In contrast, 10T1/2 cells transfected with the pSV2-neo gene alone were resistant to the cytotoxic effects of TNF. I also found that TNF-induced cell death was mediated through apoptosis. The differential sensitivity of 10T1/2 and 10T-EJ cell lines to TNF was not due to differences in the number of TNF receptors on their cell surface. In addition, TNF-resistant revertants isolated from Ha-ras-transformed, TNF-sensitive cells still expressed the same amount of p21 as TNF-sensitive cells and were still tumorigenic, suggesting that Ha-ras-induced transformation and TNF sensitivity may follow different pathways. Interestingly, TNF-resistant but not sensitive cells expressed higher levels of bcl-2, c-myc, and manganese superoxide dismutase (MnSOD) mRNA following exposure to TNF. However, TNF treatment resulted in a marginal induction of p53 mRNA in both TNF-sensitive and resistant cells. Based on these results I can conclude that (i) Ha-ras oncogene induces both transformation and TNF sensitivity, (ii) TNF-induced cytotoxicity involves apoptosis, and (iii) TNF-induced upregulation of bcl-2, c-myc, and MnSOD genes is associated with TNF resistance in C3H mouse embryo fibroblasts. ^