948 resultados para bubble induced flow
Resumo:
A boundary layer analysis of mixed convective motion over a hot horizontal flat plate is performed under the conditions of steady flow and low speed. Use of the Howarth-Dorodnytsyn transformation makes it possible to dispense with the usual Boussinesq approximation, and variable gas properties are accounted for via the assumption that dynamic viscosity and thermal conductivity are proportional to the absolute temperature. The formulation presented enables the entire mixed convection regime to be described by a single set of equations. Finite difference solutions when the Prandtl number is 0.72 are obtained over the entire range of the mixed convection parameter ξ from 0 (free convection) to 1 (forced convection) and heating parameter ▵ values from 2 to 12. The effects of both ξ and ▵on the velocity profiles, the temperature profiles, and the variation of skin friction and heat transfer functions are clearly illustrated in tables and graphs.
Resumo:
The nonsimilar non-Darcy mixed convection flow about a heated horizontal surface in a saturated porous medium has been studied when the surface temperature is a power function of distance (Tw = T∞ ± Axλ). The analysis is performed for the cases of parallel and stagnation flows with favourable induced pressure gradient. The partial differential equations governing the flow have been solved numerically using the Keller box method. The heat transfer is enhanced due to the buoyancy parameter and wall temperature, but the non-Darcy parameter reduces it. For non-Darcy flow, the similarity solution exists only for the case of parallel flow.
Resumo:
A filter cloth with 182 holes per 10−4 m2 has been used to generate air bubbles both in pure water and in aqueous solutions of electrolytes and non-electrolytes at various air flow rates. Potassium bromide and ammonium perchlorate were the electrolytes used, while the non-electrolytes were isopropanol, urea and glycerol. Bubble diameters and their size distribution were measured from photographs. The role of solutes in affecting bubble sizes and their distribution compared to that of pure water is discussed in the light of a hypothesis. This hypothesis assumes that if the final bubble diameter is less than the inter-orifice distance, then bubbles do not coalesce; on the other hand, if it is greater, then coalescence occurs when tf greater-or-equal, slantedti+ts, but does not occur when t
Resumo:
The deformation characteristics of 304L stainless steel in compression in the temperature range 20–700°C and strain rate range 0·001–100 s−1 have been studied with the aim of characterising the .flow instabilities occurring in the microstructure. At higher temperatures and strain rates the stainless steel exhibits flow localisation, whereas at temperatures below 500°C and strain rates lower than 0·1 s−1 the flow instabilities are due to dynamic strain aging. Strain induced martensite formation is responsible for the flow instabilities at room temperature and low strain rates (0·01 s−1). In view of the occurrence of these instabilities, cold working is preferable to warm working to achieve dimensional tolerance and reproducible properties in the product. Among the different criteria tested to explain the occurrence of instabilities, the continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.
Resumo:
Flow visualization studies of plane laminar bubble plumes have been conducted to yield quantitative data on transition height, wavelength and wave velocity of the most unstable disturbance leading to transition. These are believed to be the first results of this kind. Most earlier studies are restricted to turbulent bubble plumes. In the present study, the bubble plumes were generated by electrolysis of water and hence very fine control over bubble size distribution and gas flow rate was possible to enable studies with laminar bubble plumes. Present observations show that (a) the dominant mode of instability in plane bubble plumes is the sinuous mode, (b) transition height and wavelength are related linearly with the proportionality constant being about 4, (c) wave velocity is about 40 % of the mean plume velocity, and (d) normalized transition height data correlate very well with a source Grashof number. Some agreement and some differences in transition characteristics of bubble plumes have been observed compared to those for similar single-phase flows.
Resumo:
The unsteady free convection boundary layer at the stagnation point of a two-dimensional body and an axisymmetric body with prescribed surface heat flux or temperature has been studied. The magnetic field is applied parallel to the surface and the effect of induced magnetic field has been considered. It is found that for certain powerlaw distribution of surface heat flux or temperature and magnetic field with time, the governing boundary layer equations admit a self-similar solution locally. The resulting nonlinear ordinary differential equations have been solved using a finite element method and a shooting method with Newton's corrections for missing initial conditions. The results show that the skin friction and heat transfer coefficients, and x-component of the induced magnetic field on the surface increase with the applied magnetic field. In general, the skin friction, heat transfer and x-component of the induced magnetic field for axisymmetric case are more than those of the two-dimensional case. Also they change more when the surface heat flux or temperature decreases with time than when it increases with time. The skin friction, heat transfer and x-component of the induced magnetic field are significantly affected by the magnetic Prandtl number and they increase as the magnetic Prandtl number decreases. The skin friction and x-component of the magnetic field increase with the dissipation parameter, but heat transfer decreases.
Resumo:
Hemiorchidectomy (HO) in the adult male bonnet monkey results in a selective increase in circulating concentrations of FSH and testosterone, and this is accompanied by compensatory increase in sperm production by the remaining testis. We investigated the possible role of increased FSH concentration that occurs after HO in the compensatory increase in the activity of the remaining testis. Of eight adult male bonnet monkeys that underwent HO, four received i.v. injections every other day for 30 days of a well-characterized ovine FSH antiserum (a/s) that cross-reacts with monkey FSH. The remaining four males received normal monkey serum (NMS) as control treatment in a protocol similar to that employed for ais-treated males. Blood samples were collected between 2100 and 2200 h before and 1/2, 1, 3, 5, 7, 14, 22, and 29 days after HO. Testicular weight, number of 3 beta-hydroxy steroid dehydrogenase-positive (3 beta-HSD+) cells, and DNA flow cytometric analysis of germ cell populations were obtained for testes collected before and at the termination of NMS or ais treatment. In NMS-treated males, circulating serum FSH concentrations progressively increased to reach a maximal level by Day 7 after HO (1.95 +/- 0.3 vs. 5.6 +/- 0.7 ng/ml on Days -1 and 7, respectively). Within 30 min of ais injection, FSH antibodies were detected in circulation, and the antibody level was maintained at a constant level between Day 7 and end of treatment (exhibiting 50-60% binding to I-125-hFSH). Although circulating mean nocturnal serum testosterone concentration showed an initial decrease, it rose gradually to pre-HO concentrations by Day 7 in NMS-treated males. In contrast, nocturnal mat serum testosterone concentrations in a/s-treated males remained lower than in NMS-treated controls (p < 0.05) up to Day 22 and thereafter only marginally increased. Testicular weights increased (p < 0.05) over the pre-HO weight in NMS- but not in ais-treated males. After HO, the number of 3 beta-HSD+ cells (Leydig cells) was markedly increased but was significantly (p < 0.05) higher in NMS-treated males compared to a/s-treated males. A significant (p < 0.05) reduction in the primary spermatocyte population of germ cells was observed in ais-treated compared to NMS-treated males. These results suggest that the increased FSH occurring after HO could be intimately involved in increasing the compensatory functional activity of the remaining testis in the male bonnet monkey.
Resumo:
The unsteady laminar boundary layer flow of an electrically conducting fluid past a semi-infinite flat plate with an aligned magnetic field has been studied when at time t > 0 the plate is impulsively moved with a constant velocity which is in the same or opposite direction to that of free stream velocity. The effect of the induced magnetic field has been included in the analysis. The non-linear partial differential equations have been solved numerically using an implicit finite-difference method. The effect of the impulsive motion of the surface is found to be more pronounced on the skin friction but its effect on the x-component of the induced magnetic field and heat transfer is small. Velocity defect occurs near the surface when the plate is impulsively moved in the same direction as that of the free stream velocity. The surface shear stress, x-component of the induced magnetic field on the surface and the surface heat transfer decrease with an increasing magnetic field, but they increase with the reciprocal of the magnetic Prandtl number. However, the effect of the reciprocal of the magnetic Prandtl number is more pronounced on the x-component of the induced magnetic field. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A high speed photographic technique has been employed to measure the Sauter mean diameter of bubbles experimentally in a gas liquid ejector using a sodium chloride-air system. The measured values are compared with the theoretically predicted maximum bubble size diameter using Sprow's correlation. Bubble size as a function of the liquid flow rate and also of its distance from the throat of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those obtained earlier for the air-water system.
Resumo:
Experimental study and optimization of Plasma Ac- tuators for Flow control in subsonic regime PRADEEP MOISE, JOSEPH MATHEW, KARTIK VENKATRAMAN, JOY THOMAS, Indian Institute of Science, FLOW CONTROL TEAM | The induced jet produced by a dielectric barrier discharge (DBD) setup is capable of preventing °ow separation on airfoils at high angles of attack. The ef-fect of various parameters on the velocity of this induced jet was studied experimentally. The glow discharge was created at atmospheric con-ditions by using a high voltage RF power supply. Flow visualization,photographic studies of the plasma, and hot-wire measurements on the induced jet were performed. The parametric investigation of the charac- teristics of the plasma show that the width of the plasma in the uniform glow discharge regime was an indication of the velocity induced. It was observed that the spanwise and streamwise overlap of the two electrodes,dielectric thickness, voltage and frequency of the applied voltage are the major parameters that govern the velocity and the extent of plasma.e®ect of the optimized con¯guration on the performance characteristics of an airfoil was studied experimentally.
Resumo:
A flow-induced instability in a tube with flexible walls is studied experimentally. Tubes of diameter 0.8 and 1.2 mm are cast in polydimethylsiloxane (PDMS) polymer gels, and the catalyst concentration in these gels is varied to obtain shear modulus in the range 17–550 kPa. A pressure drop between the inlet and outlet of the tube is used to drive fluid flow, and the friction factor $f$ is measured as a function of the Reynolds number $Re$. From these measurements, it is found that the laminar flow becomes unstable, and there is a transition to a more complicated flow profile, for Reynolds numbers as low as 500 for the softest gels used here. The nature of the $f$–$Re$ curves is also qualitatively different from that in the flow past rigid tubes; in contrast to the discontinuous increase in the friction factor at transition in a rigid tube, it is found that there is a continuous increase in the friction factor from the laminar value of $16\ensuremath{/} Re$ in a flexible tube. The onset of transition is also detected by a dye-stream method, where a stream of dye is injected into the centre of the tube. It is found that there is a continuous increase of the amplitude of perturbations at the onset of transition in a flexible tube, in contrast to the abrupt disruption of the dye stream at transition in a rigid tube. There are oscillations in the wall of the tube at the onset of transition, which is detected from the laser scattering off the walls of the tube. This indicates that the coupling between the fluid stresses and the elastic stresses in the wall results in an instability of the laminar flow.
Resumo:
In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.
Resumo:
Boundary layer transition induced by the wake of a circular cylinder in the free stream has been investigated using the particle image velocimetry technique. Some differences between simulation and experimental studies have been reported in the literature, and these have motivated the present study. The appearance of spanwise vortices in the early stage is further confirmed here. Lambda spanwise vortex appears to evolve into a Lambda/hairpin vortex; the flow statistics also confirm such vortices. With increasing Reynolds number, based on the cylinder diameter, and with decreasing cylinder height from the plate, the physical size of these hairpin-like structures is found to decrease. Some mean flow characteristics, including the streamwise growth of the disturbance energy, in a wake-induced transition resemble those in bypass transition induced by free stream turbulence. Streamwise velocity streaks that are eventually generated in the late stage often undergo sinuous-type oscillations. Similar to other transitional flows, an inclined shear layer in the wall-normal plane is often seen to oscillate and shed vortices. The normalized shedding frequency of these vortices, estimated from the spatial spacing and the convection velocity of these vortices, is found to be independent of the Reynolds number, similar to that in ribbon-induced transition. Although the nature of free stream disturbance in a wake-induced transition and that in a bypass transition are different, the late-stage features including the flow breakdown characteristics of these two transitions appear to be similar.
Resumo:
Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.