988 resultados para biomass productivity
Resumo:
This data set contains aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 plant species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in May and August 2007 on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of coordinates within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.
Resumo:
This data set comprises a time series of aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice a year, generally in May and August (in 2002 only once in September) on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of new coordinates every year within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. Biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.
Resumo:
During the culmination of the phytoplankton spring bloom in the Fladen Ground area in April-Mai 1976, gross primary production was between 1500 and 2000 mg particulate C m**-2 day**-1, at a crop density (mainly diatoms of the genus Chaetoceros) of about 1500-3500 mg C m**-2. Estimates of the C:chlorophyll a ratio in living cells were much lower than those reported in the literature, possibly because part of what is measured as "chlorophyll a" by the common fluorometric method is associated with particles that are not reported as cells. Most of the dark 14C fixation during the bloom's climax was due to abiotic processes. Excretion of 14C-labeled carbohydrates did not account for a significant fraction of the total photosynthetic rate. The low crop after the bloom period, in June, corresponded with nutrient depletion of the euphotic zone. The low photosynthetic efficiency in June may have been a gross underestimate. The presence of relatively high concentrations of chlorophyll derivatives signifies that the algal crop was consumed by heterotrophs, but at a lower rate in April/May than during the June cruise when particularly high molar ratios of phaeophorbide a and phaeophytin a relative to chlorophyll a were found. The high respiratory rate relative to autotrophic production in June manifested itself also in high dark 14C fixation values. The high concentration of phaeophorbide a in the upper 40 m and its scarcity below this depth during the spring bloom climax in April/May implies that copepod grazing at that time took place principally in the euphotic zone. The remarkably high concentration of chlorophyllide a in the surface layer during the bloom period indicates that the part of the crop that was destroyed by the grazers while eating was occasionally as high as the part that was actually ingested.
Resumo:
The global climate is changing rapidly and Arctic regions are showing responses to recent warming. Responses of tundra ecosystems to climate change have been examined primarily through short-term experimental manipulations, with few studies of long-term ambient change. We investigated changes in above- and belowground biomass of wet sedge tundra to the warming climate of the Canadian High Arctic over the past 25 years. Aboveground standing crop was harvested from five sedge meadow sites and belowground biomass was sampled from one of the sites in the early 1980s and in 2005 using the same methods. Aboveground biomass was on average 158% greater in 2005 than in the early 1980s. The belowground biomass was also much greater in 2005: root biomass increased by 67% and rhizome biomass by 139% since the early 1980s. Dominant species from each functional group (graminoids, shrubs and forbs) showed significant increases in aboveground biomass. Responsive species included the dominant sedge species Carex aquatilis stans, C. membranacea, and Eriophorum angustifolium, as well as the dwarf shrub Salix arctica and the forb Polygonum viviparum. However, diversity measures were not different between the sample years. The greater biomass correlated strongly with increased annual and summer temperatures over the same time period, and was significantly greater than the annual variation in biomass measured in 1980-1983. Increased decomposition and mineralization rates, stimulated by warmer soils, were likely a major cause of the elevated productivity, as no differences in the mass of litter were found between sample periods. Our results are corroborated by published short-term experimental studies, conducted in other wet sedge tundra communities which link warming and fertilization with elevated decomposition, mineralization and tundra productivity. We believe that this is the first study to show responses in High Arctic wet sedge tundra to recent climate change.
Resumo:
Three stations along a productivity gradient north of the Canary Islands were investigated for surface-water properties, particle flux, and composition (biogenic and lithogenic components, and stable nitrogen isotope composition, delta15N) and export production. Investigation sites along the east-west transect off the NW African upwelling margin included the European Station for Time-Series in the Ocean, Canary Islands (ESTOC), one location contiguous to the NW African upwelling zone in the Eastern Boundary Current (EBC) and one station north of the island La Palma (LP). The seasonality of surface-water properties along the transect was mainly influenced by the winter cooling and simultaneous phytoplankton maximum and, in addition at EBC, by nearby upwelling. Accordingly, particle flux and composition along the transect were closely linked to the winter bloom sedimentation and upwelling related enhanced plankton biomass stemming from the primary upwelling and the Cape Yubi filament at EBC. During all seasons, particle flux was highest at EBC and had the highest contribution of biogenic opal and lithogenic components, and the lowest delta15N compared to the offshore stations. But contrary to what would be expected from the productivity gradient, particle flux did not decrease from ESTOC to LP. Below the upper several hundred meters, particle flux was enhanced by additional particle input along the entire transect, manifested by an increase of flux with depth and lower delta15N values. We offer a scenario in which intermediate nepheloid layers originating from the primary upwelling as well as particle dispersion from upwelling filaments, mainly the Cape Ghir filament, impact on the trap stations as far as 700 km into the open ocean. This study contributes to our understanding of the poorly resolved biogeochemical transition between the productive shelf and subtropical gyre provinces.
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2008 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in three rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.