965 resultados para biological activated carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new diffusion and flow model is presented to describe the behavior of hydrocarbon vapors in activated carbon. The micro/mesopore size distribution (PSD) is obtained according to Do's method which consists of two sequential processes of pore layering and pore filling. This model uses the micro/meso PSD obtained from each adsorbate equilibrium isotherm, which reflects the dynamics behavior of adsorbing molecules through the solid. The initial rise in total permeability is mainly attributed to adsorbed-phase diffusion (that is, surface diffusion), whereas the decrease over reduced pressure of about 0.9 is attributed to the reduction of pore space available for gas phase diffusion and flow. A functional form of surface diffusivity is proposed and validated with experimental data. This model predicts well the permeability of condensable hydrocarbon vapors in activated carbon. (C) 2005 American Institute of Chemical Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of supercritical fluids is increasingly carried out to determine the micropore size distribution. This is largely motivated by the advances in the use of supercritical adsorption in high energy applications, such as hydrogen and methane storage in porous media. Experimental data are reported as mass excess versus pressure, and when these data are matched against the theoretical mass excess, significant errors could occur if the void volume used in the calculation of the experimental mass excess is incorrectly determined [Malbrunot, P.; Vidal, D.; Vermesse, J.; Chahine, R.; Bose, T. K. Langmuir 1997, 13, 539]. 1 The incorrect value for the void volume leads to a wrong description of the maximum in the plot of mass excess versus pressure as well as the part of the isotherm over the pressure region where the isotherm is decreasing. Because of this uncertainty in the maximum and the decreasing part of the isotherm, we propose a new method in which the problems associated with this are completely avoided. Our method involves only the relationship between the amount that is introduced into the adsorption cell and the equilibrium pressure. This information of direct experimental data has two distinct advantages. The first is that the data is the raw data without any manipulation (i.e., involving further calculations), and the second one is that this relationship always monotonically increases with pressure. We will illustrate this new method with the adsorption data of methane in a commercial sample of activated carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As alcohol molecules such as methanol and ethanol have both polar and non-polar groups, their adsorption behavior is governed by the contributions of dispersion interaction (alkyl group) and hydrogen bonding (OH group). In this paper, the adsorption behavior of alcohol molecules and its effect on transport processes are elucidated. From the total permeability (B-T) of alcohol molecules in activated carbon, an adsorption mechanism is proposed, describing well the experimental data, by taking combination effects of clustering, entering micropores, layering and pore filling processes. Unlike the case of non-polar compounds, it was found that at low pressures there are two rises in the BT of alcohol molecules in activated carbon. The first rise is due to the major contribution of surface diffusion to the transport (which is the case of non-polar molecules) and the second one may be associated with cluster formation at the edge of micropores and entering micropores when the clusters are sufficiently large enough to induce a dispersive energy. In addition the clusters formed may enhance surface diffusion at low pressures and hinder gas phase diffusion and flow in meso/macropores. (c) 2006 Elsevier Ltd. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of naphthalene-2-sulfonic acid (2-NSA) adsorption by granular activated carbon (GAC) were measured and the relationships between adsorption, desorption, bioavailability and biodegradation assessed. The conventional Langmuir model fitted the experimental sorption isotherm data and introduced 2-NSA degrading bacteria, established on the surface of the GAC, did not interfere with adsorption. The potential value of GAC as a microbial support in the aerobic degradation of 2-NSA by Arthrobacter globiformis and Comamonas testosteroni was investigated. Using both virgin and microbially colonised GAC, adsorption removed 2-NSA from the liquid phase up to its saturation capacity of 140 mg/g GAC within 48 h. However, between 83.2% and 93.3% of the adsorbed 2-NSA was bioavailable to both bacterial species as a source of carbon for growth. In comparison to the non-inoculated GAC, the combination of rapid adsorption and biodegradation increased the amount (by 70–93%) of 2-NSA removal from the influent phase as well as the bed-life of the GAC (from 40 to >120 d). A microbially conditioned GAC fixed-bed reactor containing 15 g GAC removed 100% 2-NSA (100 mg/l) from tannery wastewater at an empty bed contact time of 22 min for a minimum of 120 d without the need for GAC reconditioning or replacement. This suggests that small volume GAC bioreactors could be used for tannery wastewater recycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbon is generated from various waste biomass sources like rice straw, wheat straw, wheat straw pellets, olive stones, pistachios shells, walnut shells, beech wood and hardcoal. After drying the biomass is pyrolysed in the temperature range of 500-600 °C at low heating rates of 10 K/min. The activation of the chars is performed as steam activation at temperatures between 800 °C and 900 °C. Both the pyrolysis and activation experiments were run in lab-scale facilities. It is shown that nut shells provide high active surfaces of 1000-1300 m/g whereas the active surface of straw matters does hardly exceed 800 m/g which might be a result of the high ash content of the straws and the slightly higher carbon content of the nut shells. The active surface is detected by BET method. Besides the testing of a many types of biomass for the suitability as base material in the activated carbon production process, the experiments allow for the determination of production parameters like heating rate and pyrolysis temperature, activation time and temperature as well as steam flux which are necessary for the scale up of the process chain. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of localised C=C bonds on the surface of activated carbons has been shown to be an effective method of chemical modification especially using microwave-assisted reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several Cronobacter outbreaks have implicated contaminated drinking water. This study assessed the impact of granular activated carbon (GAC) on the microbial quality of the water produced. A simulated water filter system was installed by filling plastic columns with sterile GAC, followed by sterile water with a dilute nutrient flowing through the column at a steady rate. Carbon columns were inoculated with Cronobacter on the surface, and the effluent monitored for Cronobacter levels. During a second phase, commercial faucet filters were distributed to households for 4-month use. Used filters were backwashed with sterile peptone water, and analyzed for Cronobacter, total aerobic plate count, coliform bacteria and Enterobacteriaceae. Cronobacter colonized the simulated GAC and grew when provided minimal levels of nutrients. Backwashed used filters used in home settings yielded presumptive Escherichia coli, Pseudomonas and other waterborne bacteria. Presumptive Cronobacter strains were identified as negative through biochemical and genetic test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 −). The concentration of BrO3 − was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 − adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g−1. The adsorption kinetics of BrO3 − adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalysts consisting in platinum supported on cerium oxide highly dispersed on activated carbon, with a Pt loading of 1 wt.% and ceria loadings of 5, 10 and 20 wt.% have been prepared by impregnation method and characterized by several techniques (N2 adsorption at 77 K, ICP, XRD, H2-TPR and XPS). Their catalytic behavior has been evaluated in the total oxidation of ethanol and toluene after reduction at 473 K. The obtained results show that the prepared catalysts have better performances than platinum supported on bulk CeO2. The best catalytic performance was obtained for 10 wt.% ceria loading, likely due to an optimum synergistic interaction between highly dispersed cerium oxide and platinum particles. Pt-10Ce/C achieves total conversion of ethanol and toluene to CO2 at 433 K and 453 K, respectively, and shows no deactivation during a test for 100 h. Under humid conditions (relative humidity, RH, of 40 and 80%), the activity was only slightly influenced due to the hydrophobic character of the activated carbon support, which prevents the adsorption of water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show here that a physical activation process that is diffusion-controlled yields an activated carbon whose chemistry – both elemental and functional – varies radially through the particles. For the ∼100 μm particles considered here, diffusion-controlled activation in CO2 at 800 °C saw a halving in the oxygen concentration from the particle periphery to its center. It was also observed that this activation process leads to an increase in keto and quinone groups from the particle periphery towards the center and the inverse for other carbonyls as well as ether and hydroxyl groups, suggesting the two are formed under CO2-poor and -rich environments, respectively. In contrast to these observations, use of physical activation processes where diffusion-control is absent are shown to yield carbons whose chemistry is radially invariant. This suggests that a non-diffusion limited activation processes should be used if the performance of a carbon is dependent on having a specific optimal pore surface chemical composition.