953 resultados para binary mixture
Resumo:
We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.
Resumo:
Proceedings of International Conference - SPIE 7477, Image and Signal Processing for Remote Sensing XV - 28 September 2009
Resumo:
In visual sensor networks, local feature descriptors can be computed at the sensing nodes, which work collaboratively on the data obtained to make an efficient visual analysis. In fact, with a minimal amount of computational effort, the detection and extraction of local features, such as binary descriptors, can provide a reliable and compact image representation. In this paper, it is proposed to extract and code binary descriptors to meet the energy and bandwidth constraints at each sensing node. The major contribution is a binary descriptor coding technique that exploits the correlation using two different coding modes: Intra, which exploits the correlation between the elements that compose a descriptor; and Inter, which exploits the correlation between descriptors of the same image. The experimental results show bitrate savings up to 35% without any impact in the performance efficiency of the image retrieval task. © 2014 EURASIP.
Resumo:
In this paper, a novel ROM-less RNS-to-binary converter is proposed, using a new balanced moduli set {22n-1, 22n + 1, 2n-3, 2n + 3} for n even. The proposed converter is implemented with a two stage ROM-less approach, which computes the value of X based only in arithmetic operations, without using lookup tables. Experimental results for 24 to 120 bits of Dynamic Range, show that the proposed converter structure allows a balanced system with 20% faster arithmetic channels regarding the related state of the art, while requiring similar area resources. This improvement in the channel's performance is enough to offset the higher conversion costs of the proposed converter. Furthermore, up to 20% better Power-Delay-Product efficiency metric can be achieved for the full RNS architecture using the proposed moduli set. © 2014 IEEE.
Resumo:
A thesis submitted for the degree of Doctor of Philosophy
Resumo:
Solvatochromic UV-Vis shifts of four indicators (4-nitroaniline, 4-nitroanisole, 4-nitrophenol and N,N-dimethy-1-4-nitro aniline) have been measured at 298.15 K in the ternary mixture methano1/1-propanol/acetonitrile (MeOH/1-PrOH/MeCN) in a total of 22 mole fractions, along with 18 additional mole fractions for each of the corresponding binary mixtures, MeOH/1-PrOH, 1-PrOH/MeCN and MeOH/MeCN. These values, combined with our previous experimental results for 2,6-dipheny1-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (Reichardt's betaine dye) in the same mixtures, permitted the computation of the Kamlet-Taft solvent parameters, alpha, beta, and pi*. The rationalization of the spectroscopic behavior of each probe within each mixture's whole mole fraction range was achieved through the use of the Bosch and Roses preferential solvation model. The applied model allowed the identification of synergistic behaviors in MeCN/alcohol mixtures and thus to infer the existence of solvent complexes in solution. Also, the addition of small amounts of MeCN to the binary mixtures was seen to cause a significant variation in pi*, whereas the addition of alcohol to MeCN mixtures always lead to a sudden change in a and The behavior of these parameters in the ternary mixture was shown to be mainly determined by the contributions of the underlying binary mixtures. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We investigate the thermodynamics and percolation regimes of model binary mixtures of patchy colloidal particles. The particles of each species have three sites of two types, one of which promotes bonding of particles of the same species while the other promotes bonding of different species. We find up to four percolated structures at low temperatures and densities: two gels where only one species percolates, a mixed gel where particles of both species percolate but neither species percolates separately, and a bicontinuous gel where particles of both species percolate separately forming two interconnected networks. The competition between the entropy and the energy of bonding drives the stability of the different percolating structures. Appropriate mixtures exhibit one or more connectivity transitions between the mixed and bicontinuous gels, as the temperature and/or the composition changes.
Resumo:
Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SIX mixes were produced; 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% f(ad), respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SCC mixes were produced: 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% fad, respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. © 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this brief, a read-only-memoryless structure for binary-to-residue number system (RNS) conversion modulo {2(n) +/- k} is proposed. This structure is based only on adders and constant multipliers. This brief is motivated by the existing {2(n) +/- k} binary-to-RNS converters, which are particular inefficient for larger values of n. The experimental results obtained for 4n and 8n bits of dynamic range suggest that the proposed conversion structures are able to significantly improve the forward conversion efficiency, with an AT metric improvement above 100%, regarding the related state of the art. Delay improvements of 2.17 times with only 5% area increase can be achieved if a proper selection of the {2(n) +/- k} moduli is performed.
Resumo:
The basic objective of this work is to evaluate the durability of self-compacting concrete (SCC) produced in binary and ternary mixes using fly ash (FA) and limestone filler (LF) as partial replacement of cement. The main characteristics that set SCC apart from conventional concrete (fundamentally its fresh state behaviour) essentially depend on the greater or lesser content of various constituents, namely: greater mortar volume (more ultrafine material in the form of cement and mineral additions); proper control of the maximum size of the coarse aggregate; use of admixtures such as superplasticizers. Significant amounts of mineral additions are thus incorporated to partially replace cement, in order to improve the workability of the concrete. These mineral additions necessarily affect the concrete’s microstructure and its durability. Therefore, notwithstanding the many well-documented and acknowledged advantages of SCC, a better understanding its behaviour is still required, in particular when its composition includes significant amounts of mineral additions. An ambitious working plan was devised: first, the SCC’s microstructure was studied and characterized and afterwards the main transport and degradation mechanisms of the SCC produced were studied and characterized by means of SEM image analysis, chloride migration, electrical resistivity, and carbonation tests. It was then possible to draw conclusions about the SCC’s durability. The properties studied are strongly affected by the type and content of the additions. Also, the use of ternary mixes proved to be extremely favourable, confirming the expected beneficial effect of the synergy between LF and FA. © 2015 RILEM.
Resumo:
The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 lg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by twodimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 lg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 lg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In contrast, many proteins exhibited a decrease in abundance or were absent in the gels of the simultaneous exposure to 10 and 100 lg/l MC-LR/CYN. In the latter, also a significant decrease in the fr. wt of lettuce leaves was obtained. These findings provide important insights into the molecular mechanisms of the lettuce response to CYN and MC-LR/CYN and may contribute to the identification of potential protein markers of exposure and proteins that may confer tolerance to CYN and MC-LR/CYN. Furthermore, because lettuce is an important crop worldwide, this study may improve our understanding of the potential impact of these cyanotoxins on its quality traits (e.g., presence of allergenic proteins).
Resumo:
Paper presented at Geo-Spatial Crossroad GI_Forum, Salzburg, Austria.
Resumo:
It is known that the fibrous structure of muscle causes light scattering. This phenomenon occurs due to the refractive index discontinuities located between muscle fibers and interstitial fluid. To study the possibility of reducing light scattering inside muscle, we consider its spectral transmittance evolution during an immersion treatment with an optical clearing solution containing ethanol, glycerol, and distilled water. Our methodology consists of registering spectral transmittance of muscle samples while immersed in that solution. With the spectral data collected, we represent the transmittance evolution for some wavelengths during the treatment applied. Additionally, we study the variations that the treatment has caused on the samples regarding tissue refractive index and mass. By analyzing microscopic photographs of tissue cross section, we can also verify changes in the internal arrangement of muscle fibers caused by the immersion treatment. Due to a mathematical model that we develop, we can explain the variations observed in the studied parameters and estimate the amount of optical clearing agent that has diffused into the tissue samples during the immersion treatment. At the end of the study, we observe and explain the improvement in tissue spectral transmittance, which is approximately 65% after 20 min.
Resumo:
SUMMARY A food-borne trematode infection fascioliasis is one among common public health problems worldwide. It caused a great economic loss for the human race. Control of snail population below a certain threshold level is one of the important methods in the campaign to reduce the incidence of fascioliasis. The life cycle of the parasite can be interrupted by killing the snail or Fasciola larva redia and cercaria inside of the snail Lymnaea acuminata. In vitro toxicity of different binary combinations (1:1 ratio) of plant-derived larvicidal active components such as citral, ferulic acid, umbelliferone, azadirachtin and allicin against Fasciola redia and cercaria were tested. The mortality of larvae was observed at 2h, 4h, 6h and 8h of treatment. In in vitro condition azadirachtin + allicin (1:1 ratio) was highly toxic against redia and cercaria (8h LC50 0.006 and 0.005 mg/L). Toxicity of citral + ferulic acid was lowest against redia and cercaria larvae.